人工智能方法故障诊断。2 基于人工智能的故障诊断方法的应用现状基于人工智能的故障诊断方法不需要知道被控对象的精确模型,能很好的应对不确定性和模糊性的随机故障。目前基于人工智能的故障诊断方法主要有以下几个方向:基于模糊的方法、基于神经网络的方法、专家系统故障诊断方法、基于遗传算法、支持向量机的方法、基于数据挖掘的方法、基于图论的模型推理方法等,以下是对几种故障诊断方法的具体论述。2。1 基于模糊的故障诊断方法在模糊诊断中,各种故障征兆和故障成因之间都存在不同程度的因果关系,但表现在故障与征兆之间并非存在一一对应的关系,故障征兆信息的随机性、模糊性加上某些信息的不确定性,造成了故障形式复杂多样性.这种模糊性和随机性往往不能用精确的数学公式来描述,然而用模糊逻辑、模糊诊断矩阵等模糊理论来分析其故障与现象之间的不确定性关系是可行的,从模糊数学的角度看,故障诊断是一个模糊推理问题。因而基于模糊的诊断方法得到了长足的进展[2—4]。故障诊断通常是基于一定的征兆,做出可能引起这些征兆的故障判别,而模糊逻辑系统是应用模糊理论解决问题的重要形式.讨论表明,通过建立模糊逻辑系统,采纳模糊推理的方法能够实现故障诊断。不过,成熟地应用基于模糊逻辑系统的故障诊断方法,需要解决好如何建立模糊诊断规则库等关键问题。常用的模糊逻辑诊断方法一般步骤是检测信号经过模糊化单元处理后,输入到模糊推理规则库中进行分析,其输出即为故障信息的模糊输出,经过解模糊单元处理后即可得出故障原因。另外一种基于模糊理论的诊断方法是用模糊诊断矩阵来描述故障原因和故障征兆之间关系的方法。其模糊关系矩阵的数学模型为[3]: 式中:Y 为诊断矩阵,为对象具有故障的隶属度;X 为起因矩阵,为对象具有症状的隶属度;R 为征兆矩阵,描述了 故 障 征 兆 与 故 障 原 因 之 间 的 关 系 。。基于模糊的故障诊断方法的优点在于:可将人类的语言化的知识嵌入系统;可模拟人类的近似推理能力,且通用性好,只要针对不同的故障类型对推理规则进行修改就可以应当不同的故障诊断. 但与传统的故障诊断理论和方法相比,仍有不成熟之处:基于模糊逻辑的故障诊断方法缺少在线学习能力,不适应被控对象变化的需要;模糊隶属函数和模糊推理规则无法保证任何情况下都为最优;尚未建立起有效的方法来分析和设计模糊系统,主要还是依赖专家经验和试凑。2。2 基于人工神经网络的故障诊断方法从故障诊断的...