电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《有限元分析》课程设计说明书

《有限元分析》课程设计说明书_第1页
1/20
《有限元分析》课程设计说明书_第2页
2/20
《有限元分析》课程设计说明书_第3页
3/20
矩形梁的弹塑性分析(VM24)1 原附件1.1 帮助文档(VM24)VM24Plastic Hinge in a Rectangular BeamOverviewReference:S. Timoshenko, Strength of Material, Part II, Elementary Theory and Problems, 3rd Edition, D. Van Nostrand Co., Inc., New York, NY, 1956, pg. 349, article 64.Analysis Type(s):Static, Plastic Analysis (ANTYPE = 0)Element Type(s):2-D Plastic Beam Element (BEAM23)Input Listing:vm24 .dat Test CaseA rectangular beam is loaded in pure bending. For an elastic-perfectly-plastic stress-strain behavior, show that the beam remains elastic at M = Myp = σyp bh2/6 and becomes completely plastic at M = Mult = 1.5 Myp.Figure 24.1 Plastic Hinge Problem Sketch Material PropertiesE = 30 x 106 psiυ = 0.3σyp = 36000 psiGeometric Propertiesb = 1 inh = 2 inIz = b h3/12 = 0.6667 in4LoadingM = 1.0 Myp to 1.5 Myp(Myp = 24000 in-lb)Analysis Assumptions and Modeling NotesThe problem is solved by using two types of plasticity rules: the bilinear kinematic hardening (BKIN)the bilinear isotropic hardening (BISO)An arbitrary beam length is chosen. Because of symmetry, only half of the structure is modeled (since length is arbitrary, this means only that boundary conditions are changed). The load is applied in four increments using a do-loop, and convergence status is determined from the axial plastic strain for each load step in POST26.Results Comparison (for both analyses)M/MypTargetANSYSRatio1.0Fully ElasticFully Elastic--1.1666Elastic-PlasticElastic-Plastic[1]--1.3333Elastic-PlasticElastic-Plastic[1]--1.5Fully PlasticFully Plastic[2]--1. Solution converges2. Solution does not converge (indicates that the structure has collapsed). Moment ratios slightly less than 1.5 will also show a collapse since plasticity is monitored only at discrete integ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《有限元分析》课程设计说明书

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部