3. 1.2 概率的意义(预习) (一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(二)情景导入、展示目标。1在条件 S 下进行 n 次重复实验,事件 A 出现的频数和频率的含义分别如何?2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何? 联系:概率是频率的稳定值;区别:频率具有随机性,概率是一个确定的数;范围:[0,1].3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题作出合理解释和正确决策,是我们学习概率的一个基本目的. (三)合作探究、精讲点拨。1.概率的正确理解 思考 1:连续两次抛掷一枚硬币,可能会出现哪几种结果? “两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”. 思考 2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是 0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗? 探究:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律? “两次正面朝上”的频率约为 0.25,“两次反面朝上” 的频率约为 0.25,“一次正面朝上,一次反面朝上” 的频率约为 0.5. 思考 3:围棋盒里放有同样大小的 9 枚白棋子和 1 枚黑棋子,每次从中随机摸出 1 枚棋子后再放回,一共摸 10 次,你认为一定有一次会摸到黑子吗?说明你的理由. 不一定.摸 10 次棋子相当于做 10 次重复试验,因为每次试验的结果都是随机的,所以摸 10 次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为 1-0.910≈0.6513思考 4:如果某种彩票的中奖概率为 0.001,那么买 1000 张这种彩票一定能中奖吗?为什么?不一定,理由同上. 买 1 000 张这种彩票的中奖概率约为 1-0.9991000≈0.632,即有 63.2%的可能性中奖,但不能肯定中奖. 2.游戏的公平性在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的? 裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿...