3.2.1 几类不同增长的函数模型班级:__________姓名:__________设计人__________日期__________课前预习 · 预习案【温馨寄语】生活的海洋已铺开金色的路,浪花正分列两旁摇动着欢迎的花束。勇敢地去吧,朋友!前进,已吹响出征的海螺;彩霞,正在将鲜花的大旗飞舞……【学习目标】1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们的增长差异.2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.3.恰当运用函数的三类表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【学习重点】1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义2.集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合【学习难点】1.怎样选择数学模型分析解决实际问题2.难点是集合特征性质的概念,以及运用特征性质描述法表示集合【自主学习】1.三类增长型函数图象性质的变化特征2.三类增长型函数之间增长速度的比较(1)指数函数和幂函数在区间(0,+∞)上,由于的增长速度 的增长速度,因而总存在一个实数,当时,就会有_____________(,).(2)对数函数和幂函数,的增长 的增长,因而在区间(0,+∞)上,总存在一个实数,使时有_____________(,).结论:三类增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个“档次”上,在(0,+∞)上,总会存在一个,当时有 .【预习评价】1.下表显示了函数值 随自变量 变化的一组数据,由此可判断它最可能符合的函数模型为-2-10121416A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型2.某种植物生长发育的数量 与时间 的关系如下表:123138下面的函数关系式中,能表达这种关系的是A. B.C. D.3.某工厂 12 月份的产量是 1 月份产量的 7 倍,那么该工厂这一年中的月平均增长率是 .4.某种商品降价 10%后,欲恢复原价,则应提价 .知识拓展 · 探究案【合作探究】1.几类函数模型的特征及其增长差异的比较观察函数,,在区间(0,+∞)上的图象,思考以下几个问题:(1)三个函数在区间(0,+∞)上的图象有什么特点?(2)当 趋于无穷大时,三个函数中哪个函数的增长速度最快?哪个最慢?(3)一般情况下,函数,和在区间(0,+∞)上增长速度怎样?2.几类函数模型的应用当题目条件中的...