专题讲座高中数学“函数的概念与性质”教学研究 函数是中学数学中的重点内容,它是描述变量之间依赖关系的重要数学模型.本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学生学习中常见的错误分析与解决策略;学生学习目标检测分析.研究函数问题通常有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.一、关于函数内容的深层理解(一)函数概念的发展史简述数学史角度:早期函数概念(Descartes,1596—1650 引入坐标系创立解析几何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716 引入常量、变量、参变量等概念;Euler 引入函数符号,并称变量的函数是一个解析表达式[代数角度];Dirichlet,1805—1859 提出是与之间的一种对应的观点[对应关系角度] ;Hausdorff 在《集合论纲要》中用“序偶”来定义函数[集合论角度].Dirichlet:认为怎样去建立与之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数.”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义).Veblen,1880-1960 用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的限制,变量可以是数,也可以是其它对象.(二)初高中函数概念的区别与联系1.初中函数概念:用心 爱心 专心1设在某个变化过程中有两个变量,如果对于在某个范围内的每一个值, 都有唯一的值与它对应,我们就说是的函数,叫自变量,叫的函数.2.高中函数概念:(1)设 A,B 是两个非空集合,如果按照某种对应法则 f,对 A 中的任意一个元素 x,在 B 中有一个且仅有一个元素 y 与 x 对应,则称 f 是集合 A 到集合 B 的映射.记作,其中叫原象,叫象.(2)设集合 A 是一个非空的数集,对 A 中的任意数 x,按照确定的法则 f,都有唯一确定的数 y 与它对应,则这种映射叫做集合 A 上的一个函数.记作.其中 x 叫做自变量,自变量取值的范围(数集 A)叫做这个函数的定义域.所有函数值...