空间几何体习题课一、学习目标知识与技能:了解柱体,锥体,台体,球体的几何特征,会画三视图、直观图,能求表面积、体积。过程与方法:通过旋转体的形成,掌握利用轴截面化空间问题为平面问题处理的方法。会画图、识图、用图。情感态度与价值观:培养动手能力,空间想象能力,由欣赏图形的美到去发现美,创造美。二、学习重、难点学习重点:各空间几何体的特征,计算公式,空间图形的画法。学习难点:空间想象能力的建立,空间图形的识别与应用。三、使用说明及学法指导:结合空间几何体的定义,观察空间几何体的图形培养空间想象能力,熟记公式,灵活运用.四、知识链接 1.回忆柱体、锥体、台体、球体的几何特征。2.熟记表面积及体积的公式。五、学习过程题型一:基本概念问题A 例 1:(1)下列说法不正确的是( )A:圆柱的侧面展开图是一个矩形 B:圆锥的轴截面是一个等腰三角形 C: 直角三角形绕着它的一边旋转一周形成的曲面围成的几何体是圆锥 D:圆台平行于底面的截面是圆面(2)下列说法正确的是( )A:棱柱的底面一定是平行四边形 B:棱锥的底面一定是三角形 C: 棱锥被平面分成的两部分不可能都是棱锥 D:棱柱被平面分成的两部分可以都是棱柱题型二:三视图与直观图的问题B 例 2:有一个几何体的三视图如下图所示,这个几何体应是一个( )A 棱台 B 棱锥 C 棱柱 D 都不对B 例 3:一个三角形在其直观图中对应一个边长为 1 正三角形,原三角形的面积为 ( )A. B. C. D.题型三:有关表面积、体积的运算问题B 例 4:已知各顶点都在一个球面上的正四柱高为 4,体积为 16,则这个球的表面积是 ( )A B C 24 D 32C 例 5:若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积 ( ) (A) (B) (C) (D) 题型四:有关组合体问题俯视图主 视图左 视图例 6:已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A. B. C. D.六、达标训练1、若一个几何体的三视图都是等腰三角形,则这个几何体可能是 ( )A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台2、一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原来梯形面积的( )A. 倍 B. 倍 C. 倍 D. 倍3、将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧 面,则两圆锥体积之比为( )A.3∶4 B.9∶16 C.27∶64...