第 2 课时 分类计数原理与分步计数原理的应用学习目标 巩固分类计数原理和分步计数原理,并能灵活应用这两个计数原理解决实际问题.知识点一 两个计数原理的区别与联系分类计数原理分步计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整知识点二 两个计数原理的综合应用解决较为复杂的计数问题,一般要将两个计数原理综合应用.使用时要做到目的明确,层次分明,先后有序,还需特别注意以下两点:(1)合理分类,准确分步:处理计数问题,应扣紧两个原理,根据具体问题首先弄清楚是“分类”还是“分步”,要搞清楚“分类”或者“分步”的具体标准.分类时需要满足两个条件:①类与类之间要互斥(保证不重复);②总数要完备(保证不遗漏),也就是要确定一个合理的分类标准.分步时应按事件发生的连贯过程进行分析,必须做到步与步之间互相独立,互不干扰,并确保连续性.(2)特殊优先,一般在后:解含有特殊元素、特殊位置的计数问题,一般应优先安排特殊元素,优先确定特殊位置,再考虑其他元素与其他位置,体现出解题过程中的主次思想.类型一 排数问题例 1 用 0,1,2,3,4 五个数字,(1)可以排成多少个三位数字的电话号码?(2)可以排成多少个三位数?引申探究由本例中的五个数字可组成多少个无重复数字的四位奇数?(3)可以排成多少个能被 2 整除的无重复数字的三位数? 反思与感悟 对于组数问题,应掌握以下原则:(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.跟踪训练 1 用数字 2,3 组成四位数,且数字 2,3 至少都出现一次,这样的四位数共有________个.(用数字作答)类型二 抽取(分配)问题例 2 如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为________.反思与感悟 解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①...