电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 第二课时 向量的加法与减法(一) 学案 苏教版必修4

高中数学 第二章 第二课时 向量的加法与减法(一) 学案 苏教版必修4_第1页
1/3
高中数学 第二章 第二课时 向量的加法与减法(一) 学案 苏教版必修4_第2页
2/3
高中数学 第二章 第二课时 向量的加法与减法(一) 学案 苏教版必修4_第3页
3/3
第二课时 向量的加法教学目标:掌握向量加法概念,结合物 理学实际理解向量加法的意义,能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量,理解向量加法满足交换律和结合律,表述两个运算律的几何意义,掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等.教学重点:向量加法的平行四边形法则与三角形法则.教学难点:对向量加法定义的理解.教学过程:Ⅰ.复习回顾上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.另外,向量和我们熟悉的数一样可以进行加减运算,这一节,我们先学习向量的加法.Ⅱ.讲授新课我们先给出向量加法的定义1.向量加法的定义已知 a,b,在平面内任取一点 A,作AB=a,BC=b,则向量AC叫做 a 与 b 的和,记作 a+b.即 a+b=AB+BC=AC.求两个向量和的运算叫向量的加法.2.向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则,运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.3.向量加法的平行四边形法则如图,由于平行四边形对边平行且相等,则可把向量 b 的起点由 B 移到 A,即AD= BC=b,则:AC=AB+BC=AB+AD 即:在平面内过同一点 A 作AB=a,AD=b,则以 AB、AD 为邻边构造平行四边形 ABCD,则以 A 为起点的对角线向量AC即 a 与 b 的和,这种方法即为向量加法的平行四边形法则.说明:上述两种方法实质相同,但应用各有特色,三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.4.向量加法所满足的运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)说明:运算律验证引导学生完成.1下面我们通过例题来进一步熟悉向量加法的三角形法则与平行四边形法则.[例 1]如图,已知向量 a,b,求作向量 a+b.分析:此题可以应用三角形法则也可应用平行四边形法则求解,但应注意两种法则的适用前提不同,若用三角形法则,则应平移为两向量首尾相接;若用平行四边形法则,则应平移为两向量同起点情形.作法一:设 a=AB,b=CD,过点 B 作BE=CD=b,则根据向量加法的三角形法则可得 AE=AB+BE=a+b作法二:过 A 作AE=CD=b,然...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二章 第二课时 向量的加法与减法(一) 学案 苏教版必修4

您可能关注的文档

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部