第四章 圆与方程章末小结学习目标1.掌握圆的标准方程、一般方程,会根据条件求出圆心和半径,进而求得圆的标准方程;根据方程求得圆心和半径;掌握二元二次方程表示圆的等价条件;熟练进行互化.2.掌握直线和圆的位置关系,会用代数法和几何法判断直线和圆的位置关系;掌握圆与圆的位置关系,会判断圆与圆的位置关系;会简单求解曲线的方程.3.掌握空间直角坐标系的建立,能用(x,y,z)表示点的坐标;会根据点的坐标求空间两点的距离.教学重点难点重点:熟练掌握圆的方程的几种形式,能用圆的方程来解决有关问题.难点:运用圆的方程解决与之相关的问题.教学过程一、再现型题组1.以两点 A(-3,-1)和 B(5,5)为直径端点的圆的方程是( )A.(x-1)2+(y+2)2=100B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=25D.(x+1)2+(y+2)2=252.直线 3x-4y-9=0 与圆 x2+y2=4 的位置关系是( )A.相交且过圆心B.相切C.相离D.相交但不过圆心3.方程 x2+y2+2ax-by+c=0 表示圆心为 C(2,2),半径为 2 的圆,则 a,b,c 的值依次为( )A.2,4,4B.-2,4,4C.2,-4,4D.2,-4,-44.直线 3x-4y-4=0 被圆(x-3)2+y2=9 截得的弦长为( )A.2B.4 C.4D.25.若直线(1+a)x+y+1=0 与圆 x2+y2-2x=0 相切,则 a 的值为 . 6.过点 A(1,-1)、B(-1,1)且圆心在直线 x+y-2=0 上的圆的方程是 . 7.若圆 C 的半径为 1,圆心在第一象限,且与直线 4x-3y=0 和 x 轴相切,则该圆的标准方程是 . 提高型题组【例 1】 求过两点 A(1,4),B(3,2)且圆心在直线 y=0 上的圆的标准方程并判断点P(2,4)与圆的关系.总结规律:(试总结如何判断“点与圆的位置关系”)说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?【例 2】 求经过点 A(5,2),B(3,2),圆心在直线 2x-y-3=0 上的圆的方程.总结规律:(试总结如何判断“点与圆的位置关系”)【例 3】 一圆与 y 轴相切,圆心在直线 x-3y=0 上,且直线 y=x 截圆所得弦长为 2,求此圆的方程.总结规律:(试总结如何判断“点与圆的位置关系”)点评:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得 a,b,r 或D,E,F;(3)待定系数法的应用,解答中要尽量减少未知量的个数.【例 4】 求半径为 4,与圆 x2+y2-4x-2y-4=0 相...