电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 算法与框图 教学研究

高中数学 算法与框图 教学研究_第1页
1/21
高中数学 算法与框图 教学研究_第2页
2/21
高中数学 算法与框图 教学研究_第3页
3/21
专题讲座高中数学“算法与框图”教学研究 一、整体把握“算法与框图”的教学内容 (一)算法 1.什么是算法 算法( algorithm )一词源于算术 (algorism) ,算术方法的原义是一个由已知推求未知的运算过程.后来,人们把它推广到一般,指算法是在有限步骤内求解某一问题所使用的一组定义明确的规则,甚至把把进行某一工作的方法和步骤也称为算法. 例如,人们在计算过程中,先乘除,后加减,从内到外去括号等规则,都是按部就班必须遵守的算法.人类最早关于算法的记录存在于在两河流域发现的公元前两三千年的泥板书上,其中的一个典型例子就是计算利息何时能够够等于本金.算法早期发展中值得一提的另一个成果应归功于古希腊的欧几里得,他提出的计算最大公约数的方法——辗转相除法(又称欧几里得算法)至今仍在使用. 我国古代数学发展的主导思想,就是构造“算法”,解决问题.可以说:我国古代数学中蕴含着丰富的算法思想,其中最具代表性的就是《九章算术》. 《九章算术》是战国、秦、汉时期数学发展的总结,就其数学成就来说,堪称是世界数学名著.其内容按类分章,以数学问题的形式出现,包括分数四则运算、开平方与开立方(包括二次方程数值解法)、盈不足术、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等.其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的.就其特点来说,它形成了一个以筹算为中心,与古希腊数学完全不同的独立体系. 我们现在学习的算法,不同于求解某一个具体问题的方法,它应具有如下特点: 2.算法的特点 通用性:能解决一类问题.能重复使用. 程序性: step by step .算法过程要一步一步执行. 确定性:算法的每一步执行的操作,必须确切,不能含混不清. 可行性:算法中的每一个步骤必须是能实现的.例如,在算法中,不允许出现分母为零的情况;在实数范围内不能求一个负数的平方根等. 用心 爱心 专心1有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行. 3.为什么要学习算法? 算法一方面具有具体化、程序化、机械化的特点,同时又有抽象性、概括性和精确性.对于一个具体算法而言,从算法分析到算法语言的实现,任何一个疏漏或错误都将导致算法的失败.算法是思维的条理化、逻辑化.算法所体现出来的逻辑...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 算法与框图 教学研究

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部