电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮提能一日一讲(11月12日)VIP免费

高三数学一轮提能一日一讲(11月12日)_第1页
1/8
高三数学一轮提能一日一讲(11月12日)_第2页
2/8
高三数学一轮提能一日一讲(11月12日)_第3页
3/8
一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在题后括号内.1.(2013·安徽卷)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析立体几何中的公理有四个,B,C,D都是,第四个为空间平行线的传递性,而A是面面平行的性质定理,由公理推证出来的,故选A.答案A2.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线时而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面,所以选B.答案B3.设a,b为两条直线,α,β为两个平面,且a⊄α,a⊄β,则下列结论中不成立的是()A.若b⊂β,a∥b,则a∥βB.若a⊥β,α⊥β,则a∥αC.若a⊥b,b⊥α,则a∥αD.若α⊥β,a⊥β,b∥a,则b∥α思路分析根据空间中的平行、垂直关系的判定和性质定理逐个进行判断.解析对于选项A,若有b⊂β,a∥b,且已知a⊄β,所以根据线面平行的判定定理,可得a∥β.故选项A正确.对于选项B,若a⊥β,α⊥β,则根据空间线、面的位置关系,可知a⊂α或a∥α,而由已知可知a⊄α,所以a∥α.故选项B正确.对于选项C,若a⊥b,b⊥α,所以a⊂α或a∥α.而由已知a⊄α,所以a∥α.故选项C正确.对于选项D,由a⊥β,b∥a,可得b⊥β.又α⊥β,所以b⊂α或b∥α.故不能得到b∥α.所以选项D错误.故选D.答案D4.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析m,n为异面直线,m⊥面α,n⊥面β,则α,β一定相交,不一定垂直,但交线一定垂直于直线m,n,又l⊥m,且l⊥n,则l平行于α和β的交线,故选D.答案D5.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析由题意知,在四边形ABCD中,CD⊥BD.在三棱锥A-BCD中,平面ABD⊥平面BCD,两平面的交线为BD,所以CD⊥平面ABD,因此有AB⊥CD.又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC.答案D6.(2013·江西卷)如图所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8B.9C.10D.11解析取CD中点G,连接EG,FG,得CD⊥EG,CD⊥FG,所以CD⊥面EFG,又AB∥CD,所以AB⊥面EFG,所以AB⊥EF,则EF与正方体的左右面平行,与上下前后四个面均相交,n=4,而CE在底面内与上底面平行,与四个侧面都相交,所以m=4,m+n=8,故选A.答案A二、填空题:本大题共3小题,每小题5分,共15分.将答案填在题中横线上.7.(2013·贵州贵阳一模)在正方体ABCD-A1B1C1D1中,M,N分别为A1B1,BB1的中点,则异面直线AM与CN所成角的余弦值为________.解析如图所示,取AB的中点E,连接B1E,则AM∥B1E,取EB的中点F,连接FN,则B1E∥FN,因此AM∥FN,则直线FN与CN所夹的锐角或直角为异面直线AM与CN所成的角.设AB=1,连接CF,在△CFN中,CN=,FN=,CF=.由余弦定理得cos∠CNF==.答案8.(2013·北京卷)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上.点P到直线CC1的距离的最小值为________.解析点P到直线CC1的距离等于点P在面ABCD上的射影到点C的距离,点P在面ABCD内的射影落在线段DE上,设为P′,问题等价求为P′C的最小值,当P′C⊥DE时,P′...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮提能一日一讲(11月12日)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部