2.8函数的图象1.(2019·山东师范大学附属中学月考)函数y=log2|x|的图象大致是()答案C解析函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,再作其关于y轴对称的图象即得,故选C.2.已知函数f(x)=则函数y=f(1-x)的大致图象是()答案D解析方法一先画出函数f(x)=的草图,令函数f(x)的图象关于y轴对称,得函数f(-x)的图象,再把所得的函数f(-x)的图象,向右平移1个单位,得到函数y=f(1-x)的图象(图略),故选D.方法二由已知函数f(x)的解析式,得y=f(1-x)=故该函数过点(0,3),排除A;过点(1,1),排除B;在(-∞,0)上单调递增,排除C.选D.3.将函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)等于()A.ex+1B.ex-1C.e-x+1D.e-x-1答案D解析与曲线y=ex关于y轴对称的图象对应的函数为y=e-x,将函数y=e-x的图象向左平移1个单位长度即得y=f(x)的图象,∴y=f(x)=e-(x+1)=e-x-1.4.(2019·衡水中学调研卷)为了得到函数y=lg的图象,只需把函数y=lgx的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度13logx13logx13log(1)xC.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度答案C解析 y=lg=lg(x+3)-1.∴选C.5.(2020·佛山质检)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-的解集是()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)答案A解析当x>0时,f(x)=1-2-x>0.又f(x)是定义在R上的奇函数,所以f(x)<-的解集和f(x)>的解集关于原点对称,由1-2-x>得2-x<=2-1,即x>1,则f(x)<-的解集是(-∞,-1).故选A.6.函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c>0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0答案C解析由f(x)=及图象可知,x≠-c,-c>0,则c<0.当x=0时,f(0)=>0,所以b>0,当y=0时,ax+b=0⇒x=->0.所以a<0,选C.7.(多选)关于函数f(x)=|ln|2-x||,下列描述正确的有()A.函数f(x)在区间(1,2)上单调递增B.函数y=f(x)的图象关于直线x=2对称C.若x1≠x2,但f(x1)=f(x2),则x1+x2=4D.函数f(x)有且仅有两个零点答案ABD解析函数f(x)=|ln|2-x||的图象如图所示,由图可得,函数f(x)在区间(1,2)上单调递增,A正确;函数y=f(x)的图象关于直线x=2对称,B正确;若x1≠x2,但f(x1)=f(x2),则x1+x2的值不一定等于4,C错误;函数f(x)有且仅有两个零点,D正确.8.(多选)(2019·河南浉河区校级月考)将函数f(x)的图象沿x轴向左平移1个单位长度,得到奇函数g(x)的图象,则下列函数f(x)不能满足条件的是()A.f(x)=B.f(x)=ex-1-e1-xC.f(x)=x+D.f(x)=log2(x+1)+1答案ACD解析由题意知,f(x)必须满足两个条件:①f(1)=0,②f(1+x)=-f(1-x).对于选项A,C,D,f(1)均不为0,不满足条件;对于选项B,f(1)=e0-e0=0,f(1+x)=ex-e-x,f(1-x)=e-x-ex=-f(1+x).9.已知函数f(x)=若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是__________.答案(2,2021)解析函数f(x)=的图象如图所示,不妨令a
或a≤1时,原方程的实数解的个数为0;当a=或1