平面向量数量积运算专题(附答案)234题型二利用平面向量数量积求两向量夹角例2(1)(2015·重庆)若非零向量a,b满足|a|=223|b|,且(a-b)⊥(3a+2b),则a与b的夹角为()A.π4B.π2C.3π4D.π(2)若平面向量a与平面向量b的夹角等于π3,|a|=2,|b|=3,则2a-b与a+2b的夹角的余弦值等于()A.126B.-126C.112D.-112变式训练2(2014·课标全国Ⅰ)已知A,B,C为圆O上的三点,若AO→=12(AB→+AC→),则AB→与AC→的夹角为________.5题型三利用数量积求向量的模例3(1)已知平面向量a和b,|a|=1,|b|=2,且a与b的夹角为120°,则|2a+b|等于()A.2B.4C.25D.6(2)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|PA→+3PB→|的最小值为________.变式训练3(2015·浙江)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.6高考题型精练1.(2015·山东)已知菱形ABCD的边长为a,∠ABC=60°,则BD→·CD→等于()A.-32a2B.-34a2C.34a2D.32a22.(2014·浙江)记max{x,y}=x,x≥y,y,x