电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

运筹管理--MBA运筹学讲义(DOC 51页)(2)VIP免费

运筹管理--MBA运筹学讲义(DOC 51页)(2)_第1页
1/41
运筹管理--MBA运筹学讲义(DOC 51页)(2)_第2页
2/41
运筹管理--MBA运筹学讲义(DOC 51页)(2)_第3页
3/41
第1页共41页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共41页MBA运筹学讲义运筹学是一门应用科学,它广泛应用现代科学技术知识、用定量分析的方法,解决实际中提出的问题,为决策者选择最优决策提供定量依据。运筹学的核心思想是建立在优化的基础上。例如,在线性规划中体现为两方面:(1)对于给定的一项任务,如何统筹安排,使以最少的资源消耗去完成?(2)在给定的一定数量的资源条件下,如何合理安排,使完成的任务最多?运筹学解决问题的主要方法是用数学模型描述现实中提出的决策问题,用数学方法对模型进行求解,并对解的结果进行分析,为决策提供科学依据。随着计算机及计算技术的迅猛发展,目前对运筹学的数学模型的求解已有相应的软件。因此,在实际求解计算时常可借助于软件在计算机上进行,这样可以节省大量的人力和时间。第2页共41页第1页共41页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共41页第一部分线性规划内容框架LP问题基本概念数学模型可行解、最优解实际问题LP问题解的概念基本解、基可行解提出基本最优解基本方法图解法原始单纯形法单纯形法大M法人工变量法对偶单纯形法两阶段法对偶理论进一步讨论灵敏度分析──参数规划*在经济管理领域内应用运输问题(转运问题)特殊的LP问题整数规划多目标LP问题*第一部分线性规划(LinearProgramming)及其应用第一章LP问题的数学模型与求解§1LP问题及其数学模型(一)引例1(生产计划的问题)某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A、B两种原材料的消耗以及每件产品可获的利润如下第3页共41页第2页共41页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第3页共41页表所示。问应如何安排计划使该工厂获利最多?ⅠⅡ资源限量设备128(台时)原材料A4016(kg)原材料B0412(kg)单位产品利润(元)23该问题可用一句话来描述,即在有限资源的条件下,求使利润最大的生产计划方案。解:设x1,x2分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。由于资源的限制,所以有:机器设备的限制条件:x1+2x2≤8原材料A的限制条件:4x1≤16(称为资源约束条件)原材料B的限制条件:4x2≤12同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有x1≥0,x2≥0(称为变量的非负约束)显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。而工厂的目标是在不超过所有资源限量的条件下,如何确定产量x1,x2以得到最大的利润,即使目标函数Z=2x1+3x2的值达到最大。综上所述,该生产计划安排问题可用以下数学模型表示:maxz=2x1+3x2s.t.[x1+2x2≤84x1≤164x2≤12x1⋅x2≥0引例2.(营养配餐问题)假定一个成年人每天需要从食物中获取3000卡路里热量,55克蛋白质和800毫克钙。如果市场上只有四种食品可供选择,它们每千克所含热量和营养成份以及市场价格如下表所示。问如何选择才能满足营养的前提下使购买食品的费用最小?序号食品名称热量(卡路里)蛋白质(克)钙(mg)价格(元)1猪肉10005040010第4页共41页第3页共41页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第4页共41页2鸡蛋8006020063大米9002030034白菜200105002解:设xj(j=1,2,3,4)为第j种食品每天的购买量,则配餐问题数学模型为minz=10x16x23x32x4x.t[10000x1+800x2+900x3+200x4≥300050x1+60x2+20x3+10x4≥55400x1+200x2+300x3+500x4≥800xj≥0(j=1,2,3,4)(二)LP问题的模型上述两例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。它们具有共同的特征。(1)每个问题都可用一组决策变量(x1,x2,…xn)表示某一方案,其具体的值就代表一个具体方案。通常可根据决策变量所代表的事物特点,可对变量的取值加以约束,如非负约束。(2)存在一组线性等式或不等式的约束条件。(3)都有一个用决策变量的线性函数作为决策目标(即目标函数),按问题的不同,要求目标函数实现最大化或最小化。满足以上三个条件的数学模型称为LP的数学模型,其一般形式为:max(或min)z=c1x1+c2x2+…+cnxn(1.1)s.t[a11x2+a12x2+⋯+a1nxn≤(=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

运筹管理--MBA运筹学讲义(DOC 51页)(2)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部