一次函数的图象教学设计(第二课时)一、教学设计思想本节课是一次函数图象的第2课时,主要研究正比例函数,我们将正比例函数作为一次函数的特例进行研究,过去是先研究正比例函数,再研究一次函数,体现了“特殊到一般”的研究方法,而本教材却体现“一般到特殊”研究的方法,给出了正比例函数的概念教学时教师关注学生的思维特征,只要学生说的有道理,就给与鼓励性评价,培养学生用于探索的精神。二、教学目标知识与技能1.会作正比例函数的图象.2.能说出正比例函数y=kx的图象的特点.3.提高利用函数图像解决问题的能力.过程与方法通过作正比例函数图象,并分析其特点,进一步培养数形结合的意识和能力.情感态度与价值观1.通过议一议,培养探索精神和合作交流意识.2.能积极与同伴合作交流,并能进行探索活动,发展实践能力与创新精神.三、教学重点1.正比例函数的图象的特点.2.一次函数的图象的特点.3.y=-x与y=-x+6的位置关系.四、教学难点正比例函数,一次函数图象的特点的探索过程.五、教学方法启发式教学法.六、教具准备投影片四张:第一张:练习(记作§6.3.2A);第二张:练习(记作§6.3.2B);第三张:练习(记作§6.3.2C);第四张:练习(记作§6.3.2D).七、教学过程Ⅰ.导入新课[师]上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线.经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可.还明确了一次函数的代数表达式与图象之间的对应关系.本节课我们进一步来研究一次函数图象的其他性质.Ⅱ.讲授新课一、[师]首先我们来研究一次函数的特例——正比例函数的有关性质.请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象.[生]解:如图[师]大家在画正比例函数的图象时,描了几个点?[生]我描了五个点.[生]我描了两个,因为正比例函数是一次函数,一次函数的图象是直线,两点就能确定一条直线,所以我找了两点.[生]我找了一点,因为正比例函数y=kx中,当x=0时,y=0,所以只要找一个点,再过这一点和(0,0)点就能画出正比例函数的图象.[师]刚才大家的回答都有道理,有找五个点的,有找两个点的,也有找一个点的,可能还有找四个或三个点的情况,下面大家思考一下,最少可描几个点?[生]描一个点.[生]不对,因为正比例函数的图象是直线而由两个点才能确定一条直线,所以他说描一个点就能画出直线是错的.[师]描一个点的同学实际上是描了两个点,一个点是原点,另一个是他所说的点,虽然他表达的不太合理,但是可以看出,这位同学进行了很好的观察,观察上图可以看出每一个正比例函数的图象都过(0,0)点,所以只要再找一点就可以了.由此可以得出正比例函数y=kx的图象是经过原点(0,0)的一条直线.[师]再观察上图,直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一个与x轴正方向所成的锐角最小?[生]y=3x与x轴正方向所成的锐角最大,y=x与x轴正方向所成的锐角最小.[师]从正比例函数y=x,y=x,y=3x中的k有何共同点?[生]都是大于0的数.[师]由k的大小和直线与x轴正方向所成的锐角的大小情况来看,它们之间是否有共同点?[生]k=3时,y=3x与x轴正方向所成的锐角最大,当x=时,y=x与x轴正方向所成的锐角最小,所以可以看出,当k>0时,k的值越大,y=kx与x轴正方向所成的锐角越大.[师]从上面还可以看出,当k>0时,y随x的增大而怎样变化?当k<0时,y随x的增大而怎样变化?[生]当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.[师]现在,我们一起来回忆一下,对正比例函数都讨论了哪些性质?正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点.(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点.(3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大.(4)在正比例函数y=kx图象中,当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小.二、做一做在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图...