电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

春九年级数学下册 第一章 直角三角形的边角关系 1.2 30°,45°,60°角的三角函数值教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案VIP免费

春九年级数学下册 第一章 直角三角形的边角关系 1.2 30°,45°,60°角的三角函数值教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案_第1页
1/4
春九年级数学下册 第一章 直角三角形的边角关系 1.2 30°,45°,60°角的三角函数值教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案_第2页
2/4
春九年级数学下册 第一章 直角三角形的边角关系 1.2 30°,45°,60°角的三角函数值教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案_第3页
3/4
1.230°,45°,60°角的三角函数值1.经历探索30°,45°,60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°,45°,60°角的三角函数值的计算;(重点)3.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小.(难点)一、情境导入在直角三角形中(利用一副三角板进行演示),如果有一个锐角是30°(如图①),那么另一个锐角是多少度?三条边之间有什么关系?如果有一个锐角是45°呢(如图②)?由此你能发现这些特殊锐角的三角函数值吗?二、合作探究探究点一:30°,45°,60°角的三角函数值【类型一】利用特殊角的三角函数值进行计算计算:(1)2cos60°·sin30°-sin45°·sin60°;(2).解析:将特殊角的三角函数值代入求解.解:(1)原式=2××-××=-=-1;(2)原式==2-3.方法总结:解决此类题目的关键是熟记特殊角的三角函数值.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】已知三角函数值求角的取值范围若cosα=,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.0°<α<30°解析: cos30°=,cos45°=,cos60°=,且<<,∴cos60°<cosα<cos45°,∴锐角α的范围是45°<α<60°.故选C.方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型三】已知三角函数值,求角度根据下列条件,确定锐角α的值:(1)cos(α+10°)-=0;(2)tan2α-(+1)tanα+=0.解析:(1)根据特殊角的三角函数值来求α的值;(2)用因式分解法解关于tanα的一元二次方程即可.解:(1)cos(α+10°)=,α+10°=30°,∴α=20°;(2)tan2α-(+1)tanα+=0,(tanα-1)(tanα-)=0,tanα=1或tanα=,∴α=45°或α=30°.方法总结:熟记特殊角的三角函数值以及将“tanα”看作一个未知数解方程是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第8题探究点二:特殊角的三角函数值的应用【类型一】特殊角的三角函数值与其他知识的综合已知△ABC中的∠A与∠B满足(1-tanA)2+|sinB-|=0,试判断△ABC的形状.解析:根据非负性的性质求出tanA及sinB的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论.解: (1-tanA)2+|sinB-|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,∴△ABC是锐角三角形.方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型二】利用特殊角的三角函数值求三角形的边长如图所示,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=,求线段AD的长.解析:首先根据直角三角形的性质推出∠BAC的度数,再求出∠CAD=30°,最后根据特殊角的三角函数值求出AD的长度.解: △ABC中,∠C=90°,∠B=30°,∴∠BAC=60°. AD是△ABC的角平分线,∴∠CAD=30°,∴在Rt△ADC中,AD==×=2.方法总结:解决此题的关键是利用转化的思想,将已知和未知元素化归到一个直角三角形中,进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型三】构造三角函数模型解决问题要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=,∠ABC=30°,∴tan30°===.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.解析:根据角平分线的性质以及勾股定理首先求出CD的长,进而得出tan15°=,tan75°=.解:作∠B的平分线交AC于点D,作DE⊥AB,垂足为E. BD平分∠ABC,CD⊥BC,DE⊥AB,∴CD=DE.设CD=x,则AD=1-x,AE=2-BE=2-BC=2-.在Rt△ADE中,DE2+AE2=AD2,x2+(2-)2=(1-x)2,解得x=2-3,∴tan15°==2-,tan75°===2+.方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.变式训练...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

春九年级数学下册 第一章 直角三角形的边角关系 1.2 30°,45°,60°角的三角函数值教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部