§4.8.2相似多边形的性质(二)●教学目标(一)教学知识点1.相似多边形的周长比,面积比与相似比的关系.2.相似多边形的周长比,面积比在实际中的应用.(二)能力训练要求1.经历探索相似多边形的性质的过程,培养学生的探索能力.2.利用相似多边形的性质解决实际问题训练学生的运用能力.(三)情感与价值观要求1.学生通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似多边形的周长比、面积比与相似比关系的推导.2.运用相似多边形的比例关系解决实际问题.●教学难点相似多边形周长比、面积比与相似比的关系的推导及运用.●教学过程Ⅰ.创设问题情境,引入新课Ⅱ.新课讲解1.做一做图4-44在图4-44中,△ABC∽△A′B′C′,相似比为.(1)请你写出图中所有成比例的线段.(2)△ABC与△A′B′C′的周长比是多少?你是怎么做的?(3)△ABC的面积如何表示?△A′B′C′的面积呢?△ABC与△A′B′C′的面积比是多少?与同伴交流.2.想一想如果△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比和面积比分别是多少?3.议一议投影片(§4.8.2B).如图4-45,四边形A1B1C1D1∽四边形A2B2C2D2,相似比为k.图4-45(1)四边形A1B1C1D1与四边形A2B2C2D2的周长比是多少?(2)连接相应的对角线A1C1,A2C2,所得的△A1B1C1与△A2B2C2相似吗?△A1C1D1与△A2C2D2呢?如果相似,它们的相似各是多少?为什么?(3)设△A1B1C1,△A1C1D1,△A2B2C2,△A2C2D2的面积分别是那么各是多少?(4)四边形A1B1C1D1与四边形A2B2C2D2的面积比是多少?如果把四边形换成五边形,那么结论又如何呢?由此可知:相似多边形的周长比等于相似比,面积比等于相似比的平方.4.做一做Ⅲ.随堂练习Ⅳ.课时小结本节课我们重点研究了相似多边形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方.Ⅴ.课后作业