训练目标(1)利用导数研究函数的常见题型;(2)解题步骤的规范训练.训练题型(1)利用导数求切线问题;(2)导数与单调性;(3)导数与极值、最值.解题策略(1)求曲线切线的关键是确定切点;(2)讨论函数的单调性、极值、最值可通过研究导数的符号用列表法解决;(3)证明不等式、不等式恒成立或有解、函数零点问题都可以转化为函数极值、最值问题.1.设函数f(x)=(x-1)ex-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.2.已知函数f(x)=ax3+bx+c在x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.3.已知函数f(x)=x3+bx2+cx的图象在点(1,f(1))处的切线方程为6x-2y-1=0,f′(x)为f(x)的导函数,g(x)=aex(a,b,c∈R,e为自然对数的底数).(1)求b,c的值;(2)若∃x0∈(0,2],使g(x0)=f′(x0)成立,求a的取值范围.4.(2015·南平质检)已知函数f(x)=sinx,g(x)=mx-(m为实数).(1)求曲线y=f(x)在点P(,f())处的切线方程;(2)求函数g(x)的单调递减区间;(3)若m=1,证明:当x>0时,f(x)0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.答案解析1.解(1)当k=1时,f(x)=(x-1)ex-x2,∴f′(x)=ex+(x-1)ex-2x=x(ex-2).令f′(x)>0,即x(ex-2)>0,∴x>ln2或x<0.令f′(x)<0,即x(ex-2)<0,∴00,故f(x)在(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数.由此可知f(x)在x=-2处取得极大值f(-2)=16+c,f(x)在x=2处取得极小值f(2)=c-16.由题设条件知16+c=28,解得c=12.此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4.3.解(1)由题意得f′(x)=3x2+2bx+c,∴f′(1)=2b+c+3=3.又f(1)=b+c+1,点(1,f(1))在直线6x-2y-1=0上,∴6-2(b+c+1)-1=0,故b=-,c=3.(2)∵g(x0)=f′(x0),∴aex0=3x-3x0+3,∴a=.令h(x)=,则h′(x)=,令h′(x)=0,得x=1或x=2.当x变化时,h(x)与h′(x)在x∈(0,2]上的变化情况如下表所示:x(0,1)1(1,2)2h′(x)-0+0h(x)∴h(x)在x∈(0,2]上有极小值h(1)=,又h(2)=,h(0)=3>,∴h(x)在x∈(0,2]上的取值范围为[,3),∴a的取值范围为[,3).4.(1)解由题意得所求切线的斜率k=f′()=cos=.切点P(,),则切线方程为y-=(x-),即x-y+1-=0.(2)解g′(x)=m-x2.①当m≤0时,g′(x)≤0,则g(x)的单调递减区间是(-∞,+∞);②当m>0时,令g′(x)<0,解得x<-或x>,则g(x)的单调递减区间是(-∞,-),(,+∞).(3)证明当m=1时,g(x)=x-.令h(x)=g(x)+-f(x)=x-sinx,x∈(0,+∞),h′(x)=1-cosx≥0,则h(x)是(0,+∞)上的增函数,故当x>0时,h(x)>h(0)=0,即sinx0)得f′(x)=x-=.由f′(x)=0解得x=(负值舍去).f(x)与f′(x)在区间(0,+∞)上的变化情况如下表:x(0,)(,+∞)f′(x)-0+f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,+∞).f(x)在x=处取得极小值f()=,无极大值.(2)证明由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以≤0,从而k≥e,当k=e时,f(x)在区间(1,)上单调递减,且f()=0,所以x=是f(x)在区间(1,]上的唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且f(1)=>0,f()=<0,所以f(x)在区间(1,]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.