第5讲直接证明与间接证明1.(2019·扬州质检)用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是________.解析:“至少有一个”的否定是“一个也没有”,故应假设“a,b中没有一个能被5整除”.答案:a,b中没有一个能被5整除2.设a=-,b=-,c=-,则a、b、c的大小顺序是________.解析:因为a=-=,b=-=,c=-=,且+>+>+>0,所以a>b>c.答案:a>b>c3.已知点An(n,an)为函数y=图象上的点,Bn(n,bn)为函数y=x图象上的点,其中n∈N*,设cn=an-bn,则cn与cn+1的大小关系为________.解析:由条件得cn=an-bn=-n=,所以cn随n的增大而减小,所以cn+1
1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件的序号是________.解析:若a=,b=,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,a,b中至少有一个大于1.答案:③7.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A、B、C的大小关系为________.解析:因为≥≥,又f(x)=在R上是减函数.所以f≤f()≤f,即A≤B≤C.答案:A≤B≤C8.在R上定义运算:=ad-bc.若不等式≥1对任意实数x恒成立,则实数a的最大值为________.解析:据已知定义可得不等式x2-x-a2+a+1≥0恒成立,故Δ=1-4(-a2+a+1)≤0,解得-≤a≤,故a的最大值为.答案:9.若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一点c,使f(c)>0,则实数p的取值范围是________.解析:法一:(补集法)令解得p≤-3或p≥,故满足条件的p的取值范围为.法二:(直接法)依题意有f(-1)>0或f(1)>0,即2p2-p-1<0或2p2+3p-9<0,得-