1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:⇒…⇒…⇒③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:⇐…⇐…⇐③思维过程:执果索因.2.间接证明(1)反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)反证法的步骤:①反设——假设命题的结论不成立,即假定原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.(×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(3)用反证法证明结论“a>b”时,应假设“aa+b,则a、b应满足的条件是__________________.答案a≥0,b≥0且a≠b解析 a+b-(a+b)=(a-b)+(b-a)=(-)(a-b)=(-)2(+).∴当a≥0,b≥0且a≠b时,(-)2(+)>0.∴a+b>a+b成立的条件是a≥0,b≥0且a≠b.5.(教材改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则△ABC的形状为________三角形.答案等边解析由题意2B=A+C,又A+B+C=π,∴B=,又b2=ac,由余弦定理得b2=a2+c2-2accosB=a2+c2-ac,∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,∴A=C,∴A=B=C=,∴△ABC为等边三角形.题型一综合法的应用例1已知数列{an}满足a1=,且an+1=(n∈N*).(1)证明数列{}是等差数列,并求数列{an}的通项公式;(2)设bn=anan+1(n∈N*),数列{bn}的前n项和记为Tn,证明:Tn<.(1)解由已知可得,当n∈N*时,an+1=.两边取倒数得,==+3,即-=3,所以数列{}是首项为=2,公差为3的等差数列,其通项公式为=+(n-1)×3=2+(n-1)×3=3n-1.所以数列{an}的通项公式为an=.(2)证明由(1)知an=,故bn=anan+1=×==(-),故Tn=b1+b2+…+bn=×(-)+×(-)+…+×(-)=(-)=-×.因为>0,所以Tn<.思维升华(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a、b、c均为正数,且a+b+c=1,证明:(1)ab+bc+ac≤;(2)++≥1.证明(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得a2+b2+c2≥ab+bc+ca.由题设知(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a...