12.1合情推理与演绎推理1.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由特殊到特殊的推理.(3)合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.2.演绎推理(1)演绎推理一种由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——一般性的原理;②小前提——特殊对象;③结论——揭示了一般原理与特殊对象的内在联系.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).(×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.答案123解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a10+b10=123.2.下面几种推理过程是演绎推理的是________.①在数列{an}中,a1=1,an=(an-1+)(n≥2),由此归纳数列{an}的通项公式;②由平面三角形的性质,推测空间四面体性质;③两直线平行,同旁内角互补,如果∠A和∠B是两条平行直线与第三条直线形成的同旁内角,则∠A+∠B=180°;④某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人.答案③解析①、④是归纳推理,②是类比推理,③符合三段论模式,③是演绎推理.3.(2017·南京质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.则正确的结论是________.答案①④解析显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交.4.(教材改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________________.答案b1b2…bn=b1b2…b17-n(n<17,n∈N*)解析利用类比推理,借助等比数列的性质,b=b1+n·b17-n,可知存在的等式为b1b2…bn=b1b2…b17-n(n<17,n∈N*).5.(2016·泰州模拟)若数列{an}的通项公式为an=(n∈N*),记f(n)=(1-a1)(1-a2)…(1-an),试通过计算f(1),f(2),f(3)的值,推测出f(n)=________.答案解析f(1)=1-a1=1-=,f(2)=(1-a1)(1-a2)=(1-)==,f(3)=(1-a1)(1-a2)(1-a3)=(1-)=,推测f(n)=.题型一归纳推理命题点1与数字有关的等式的推理例1(2016·山东)观察下列等式:-2+-2=×1×2;-2+-2+-2+-2=×2×3;-2+-2+-2+…+-2=×3×4;-2+-2+-2+…+-2=×4×5;…照此规律,-2+-2+-2+…+-2=__________.答案×n×(n+1)解析观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n+1.命题点2与不等式有关的推理例2(2016·苏北四市联考)已知x∈(0,+∞),观察下列各式:x+≥2,x+=++≥3,x+=+++≥4,...