第三章一元一次方程3.1从算式到方程3.1.1一元一次方程【知识与技能】(1)理解方程、一元一次方程、解方程、方程的解的含义,会检验一个数是否为某个一元一次方程的解.(2)初步学会如何寻找问题中的相等关系,列出方程.【过程与方法】通过解决实际问题,让学生体验从算术方法到代数方法是一种进步,体会方程思想.【情感态度与价值观】培养学生获取信息,分析问题,处理问题的能力.了解一元一次方程及其相关概念.寻找问题中的相等关系,列方程.多媒体课件教师提问:你知道什么叫方程吗?学生回答:含有未知数的等式叫作方程.教师:你能举出一些方程的例子吗?由学生举例,教师总结、板书课题.一、思考探究,获取新知教师利用多媒体展示图片,出示以下问题:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?教师提问:你能解决这个问题吗?有哪些方法?学生小组内讨论,看能否用算术方法解,然后考虑用方程如何解决,教师可以参与到学生中去,关注学生解决问题的思路.教师总结:(方法一)算术法:(328-64)÷44=264÷44=6(辆).(方法二)列方程法:设需要租用x辆客车,那么这些客车共可乘坐44x人,加上乘坐校车的64人,就是全体师生共328人,可得44x+64=328.在这一教学过程中,教师不仅要使学生掌握此问题的解决方法,而且要让学生通过对比算术法与方程法,去体会列方程过程中的一般思路和方法.针对以上方程,教师提问:像上面这样的方程,你能给它起一个名字吗?学生阅读教材,体验方程的表达方式,并说说什么是一元一次方程.教师进一步提出问题:结合算术法,你能试着解出这个方程吗?得到的结果对所列的方程来说具有什么特点?学生可能利用逆运算求解,得出所求的结果使方程左右两边的值相等的特点,教师加以肯定,教师归纳总结有关方程的概念:①含有未知数的等式叫作方程.(44x+64=328,44,64,328为已知数,x为未知数)②只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫作一元一次方程.③解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.教师:想一想,你是怎样列出方程的?找学生代表回答解题思路.教师归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.二、典例精析,掌握新知例1判断下列各式是不是方程,如果是,指出已知数和未知数,并说明哪些是一元一次方程;如果不是,说明理由.①5-2x=1;②y2+2=4y-1;③x-2y=6;④2x2+5x-8;⑤3×2=1;⑥(x-1)·(x+2)(x+1)=0;⑦1+x=x+1;⑧|x|=-2【解】①是一元一次方程,5,-2,1是已知数,x是未知数;②是方程,2,4,-1是已知数,y是未知数;③是方程,-2,6是已知数,x,y是未知数;④不是方程,因为不是等式;⑤不是方程,因为不含有未知数;⑥是方程,-1,2,1,0是已知数,x是未知数;⑦是一元一次方程,1是已知数,x是未知数;⑧是方程,-2是已知数,x是未知数.例2在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”赵敏同学很快说出了答案为3年.她是这样算的:1年后,老师46岁,同学们的年龄是14岁,不是老师年龄的三分之一;2年后,老师47岁,同学们的年龄是15岁,也不是老师年龄的三分之一;3年后,老师48岁,同学们的年龄是16岁,恰好是老师年龄的三分之一.你能否用方程的方法来解答呢?(只列方程即可)【建议】学生独立完成,小组内交流,教师巡视,引导学生说一说这两种方法各自的特点,只要学生能谈出一两点体会,教师都应当加以鼓励.最后,教师给出总结:(用算术方法解)未知数不参加列式,表示计算过程,根据题里已知数和未知数间的关系,确定解题步骤,再列式计算;(用方程解)未知数用x表示,x参加列式,表示相等关系,根据题意找出数量间的相等关系,列出含有x的等式.【解】赵敏同学的方法是算术方法,用方程的方法解答如下:设x年后学生的年龄是老师年龄的三分之一,则可列方程为13+x=13(45+x).例3检验下列各数是不是方程4x-3=2x+3的解.(1)x=3;(2)x=8.【解】(1)把x=3...