河南省偃师市府店镇第三初级中学七年级数学下册6.3实践与探索(等积变问题)教案华东师大版知识与能力:1、通过例题的教学,让学生初步体会数形结合思想的作用。2、掌握用一元一次方程解应用题的步骤。过程与方法:让学生多练习,通过练习掌握解应用题的步骤。情感、态度与价值观:通过教学让学生理解生活中的数学知识,并能运用所学知识解决生活中的有关问题。教学重难点:重点:分析题意,建立等量关系来理解题意。教学流程:一、复习提问1.列一元一次方程解应用题的步骤是什么?2.长方形的周长公式、面积公式。二、合作探究:问题3.用一根长60厘米的铁丝围成一个长方形。(1)使长方形的宽是长的专,求这个长方形的长和宽。(2)使长方形的宽比长少4厘米,求这个长方形的面积。(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?让学生独立探索解法,并互相交流。第(1)小题一般能由学生独立或合作完成,教师也可提示:与几何图形有关的实际问题,可画出图形,在图上标注相关量的代数式,借助直观形象有助于分析和发现数量关系。分析:由题意知,长方形的周长始终不变,长与宽的和为60÷2=30(厘米),解决这个问题时,要抓住这个等量关系。第(2)小题的设元,可让学生尝试、讨论,对学生所得到的结论都应给予鼓励,在讨论交流的基础上,使学生知道,不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。(3)当长方形的长为18厘米,宽为12厘米时长方形的面积=18×12=216(平方厘米)当长方形的长为17厘米,宽为13厘米时长方形的面积=221(平方厘米)∴(1)中的长方形面积比(2)中的长方形面积小。问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。通过计算,发现随着长方形长与宽的变化,长方形的面积也发生变化,并且长和宽的差越小,长方形的面积越大,当长和宽相等,即成正方形时面积最大。实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。三、巩固练习教科书第14页练习1、2。第l题,组织学生讨论,寻找本题的“等量关系”。用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积=长方体的体积。第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么?通过思考,使学生明确要解决“能否完全装下”这个问题,实质是比较这两个容器的容积大小,因此只要分别计算这两个容器的容积,结果发现装不下,接着研究第2个问题,“那么瓶内水面还有多高”呢?如果设瓶内水面还有x厘米高,那么这里的等量关系是什么?等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。从而列出方程四、小结五、作业:课本15页1题