山东省枣庄市峄城区吴林街道中学八年级数学下册《第一章,不等式的基本性质》教案1北师大版教学目标:1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别教学重点与难点:重点:探索不等式的基本性质,并能灵活地掌握和应用.难点:能根据不等式的基本性质进行化简.教法与学法指导:引导学生采用自主探索、合作交流方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动口、动脑的能力,尽量让每一个学生都能参与学习活动。课前准备:多媒体课件.教学过程:一、创设情境,自然引入我们已学过等式,不等式,现在我们来看两组式子,请同学们观察,哪些是等式?哪些是不等式?第一组:1+2=3;a+b=b+a;S=ab;4+x=7.第二组:-7<-5;3+4>1+4;2x≤6,a+2≥0;3≠4.师:什么叫做等式?什么叫做不等式?生:回答师:前面我们学过了等式,同学们还记得等式的性质吗?生:记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.等式的基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.师;不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.设计意图:通过复习,巩固所学知识,并对新知识产生兴趣,知道用对比的方法来推导新知识.二、交流讨论探索新知1.不等式基本性质的推导师:如果在不等式的两边都加上或减去同一个整式,那么结果会怎样?请举几个例子试一试,并于同伴交流。生: 3<5∴3+2<5+23-2<5-23+a<5+a3-a<5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.师:很好.不等式的这一条性质和等式的性质相似.不等式的基本性质1不等式的两边都加上(或减去)同一个整式,不等号的方向不变.生: 3<5∴3×2<5×23×<5×.所以,在不等式的两边都乘以同一个数,不等号的方向不变.生:不对.如3<53×(-2)>5×(-2)所以上面的总结是错的.师:看来大家有不同意见,请互相讨论后举例说明.生:如3<43×3<4×33×<4×3×(-3)>4×(-3)3×(-)>4×(-)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.师:非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.生:当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.师:因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.不等式的基本性质2不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3不等式的两边都乘以(或除以)同一个负数,不等号的方向改变;设计意图:通过等式的基本性质对比不等式的基本性质,由数学情境转化成数学问题,由特殊的数值到字母代表数,从中归纳出一般性结论。进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力.2.用不等式的基本性质解释>的正确性师:在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为和,且有>存在,你能用不等式的基本性质来解释吗?生: 4π<16∴> l2>0,根据不等式的基本性质2,两边都乘以l2得>3.例题讲解将下列不等式化成“x>a”或“x<a”的形式:(1)x-5>-1;(2)-2x>3;(3)3x<-9.生:(1)根据不等式的基本性质1,两边都加上5,得x>-1+5即x>4;(2)根据不等式的基本性质3,两边都除以-2,得x<-;(3)根据不等式的基本性质2,两边都除以3,得x<-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.设计意图:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解.三、学以致用知识反馈1.将下列不等式化成“x>a”或“x<a”的形式.(1)x-1>2(2)-x<[生]解:(1)根据不等式的基本性质1,两边都加上1,得x>3(2)根据不等式的基本性质3,两边都乘以-1,得x>-2.已知x>y,下列不等式一定成立吗?(1)x-6<y-...