6.6关注三角形的外角教案教学目标:1.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力.2.理解掌握三角形内角和定理的推论及其应用.教学重点与难点:重点:三角形内角和定理的推论.难点:三角形的外角、三角形内角和定理的推论的应用.教法与学法指导:教法:以培养学生自主学习能力为主,重点放在“合作与探究”上,让学生多观察、多动脑、大胆猜、勤探究,向学生提供更多的实践机会和交流空间,使学生在动脑、动手、动口的过程中获得分析和解决问题的能力,获得广泛的数学活动经验,成为学习的主人.学法:自主探究与小组合作交流相结合.课前准备:多媒体课件教学过程:一、温故知新,自然引入[师]上节课我们证明了三角形内角和定理,大家来回忆一下:它的证明思路是什么?[生]通过作辅助线,把三角形中处于不同位置的三个内角集中在一起,拼成一个平角.这样就可以证明三角形的内角和等于180°.[师]很好,下面大家来共同证明:三角形的内角和定理.已知,如图6-56,△ABC.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作CE∥BA.则:∠A=∠ACE(两直线平行,内错角相等)∠B=∠ECD(两直线平行,同位角相等) ∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠ACB+∠A+∠B=180°(等量代换)[师]好,在证明这个定理时,先把△ABC的一边BC延长,这时在△ABC外得到∠ACD,我们把∠ACD叫做三角形ABC的外角.那三角形的外角有什么性质呢?我们这节课就来研究三角形的外角及其应用.设计意图:复习三角形内角和定理的证明方法,为本节课学生打好理论基础,进而引入新课.二、师生互动,探究新知[师]那什么叫三角形的外角呢?像∠ACD那样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.外角的特征有三条:(1)顶点在三角形的一个顶点上.如:∠ACD的顶点C是△ABC的一个顶点.(2)一条边是三角形的一边.如:∠ACD的一条边AC正好是△ABC的一条边.(3)另一条边是三角形某条边的延长线.如:∠ACD的边CD是△ABC的BC边的延长线.把三角形各边向两方延长,就可以画出一个三角形所有的外角.由此可知:一个三角形有6个外角,其中有三个与另外三个相等,所以研究时,只讨论三个外角的性质.下面大家来想一想、议一议(出示投影片§6.6A)如图6-57,∠1是△ABC的一个外角,∠1与图中的其他角有什么关系呢?能证明你的结论吗?[生甲]∠1与∠4组成一个平角.所以∠1+∠4=180°.[生乙]∠1=∠2+∠3.因为:∠1与∠4的和是180°,而∠2、∠3、∠4是△ABC的三个内角.则∠2+∠3+∠4=180°.所以∠2+∠3=180°-∠4.而∠1=180°-∠4,因此可得:∠1=∠2+∠3.[生丙]因为∠1=∠2+∠3,所以由和大于任何一个加数,可得:∠1>∠2,∠1>∠3.[师]很好.大家能用自己的语言说明你的结论的正确性.你能把你的结论归纳成语言吗?[生丁]三角形的一个外角等于两个内角的和.它也大于三角形的一个内角.[生戊]不对,如图6-58.图6-58(1)中,∠ACD是△ABC的外角,从图中可知:△ACB是钝角三角形.∠ACB>∠ACD.所以∠ACD不可能等于△ABC内的任两个内角的和.图6-58(2)中的△ABC是直角三角形,∠ACD是它的一个外角,它与∠ACB相等.由上述可知:丁同学归纳的结论是错误的.应该说:三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任一个内角.[师]噢.原来是这样的,同学们同意他的意见吗?[生]同意.[师]是三角形的任一个外角都有此结论吗?[生]是的.[师]很好.由此我们得到了三角形的外角的性质(出示投影片§6.6B)三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.[师]这两个结论是由什么推导出来的呢?[生]通过三角形的内角和定理推出来的.[师]对.在这里,我们通过三角形内角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定理的推论(corollary).因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用.注意:应用三角形内角和定理的推论时,一定要理解其意思.即:“和它不相邻”的意义.下面我们来研究三角形内角和定理的...