专题十二推理与证明探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行简单的推理;③了解合情推理和演绎推理之间的联系和差异2019课标全国Ⅱ,5,5分合情推理—★★☆2016课标全国Ⅱ,16,5分合情推理—2019课标全国Ⅰ,4,5分合情推理—直接证明与间①了解直接证明的两种基本方法:分析法与综合法,并了解分析法和综合法的思考过2018江苏,20,16分直接证明等差、等比数列★★☆接证明程、特点;②了解间接证明的一种基本方法:反证法,并了解反证法的思考过程、特点的综合应用分析解读本专题在高考中主要考查以下几个方面:1.归纳推理与类比推理以选择题、填空题的形式出现,考查学生的逻辑推理能力,而演绎推理多出现在立体几何的证明中;2.直接证明与间接证明作为证明和推理数学命题的方法,常以不等式、立体几何、解析几何、函数为载体,考查综合法、分析法及反证法.本专题内容在高考中的分值分配:①归纳推理与类比推理分值为5分左右,属于中档题;②证明问题以解答题形式出现,分值为12分左右,属于中高档题.破考点练考向【考点集训】考点一合情推理与演绎推理1.(2019安徽六校教育研究会第一次素质测试,8)如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正(n+2)边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2)B.3(2n+2)C.2n(5n+1)D.(n+2)(n+3)答案D2.(命题标准样题,14)甲、乙、丙、丁参加一比赛,赛前甲、乙、丙分别作出预测.甲说:乙会获得奖牌;乙说:丙会获得金牌;丙说:丁不会获得银牌.比赛结果有3人分别获得金牌、银牌和铜牌,另外1人没获得奖牌.如果甲、乙、丙中有一人获得了金牌,而且只有获得金牌的那个人预测正确,则获得金牌的是.答案甲3.(2019广东珠海期末,14)某班级的四位学生A、B、C、D参加了文科综合知识竞赛,在竞赛结果公布前,地理老师预测得冠军的是A或B;历史老师预测得冠军的是C;政治老师预测得冠军的不可能是A或D;语文老师预测得冠军的是B,而班主任老师看了竞赛结果后说以上只有两位老师都说对了,则得冠军的是.答案C考点二直接证明与间接证明1.(2018湖北普通高中联考,7)分析法又叫执果索因法,若使用分析法证明:设a0B.c-a>0C.(c-b)(c-a)>0D.(c-b)(c-a)<0答案C2.(2020届河南许昌质量检测,7)用反证法证明命题“已知x,y∈N*,如果xy可被7整除,那么x,y至少有一个能被7整除”时,假设的内容是()A.x,y都不能被7整除B.x,y都能被7整除C.x,y只有一个能被7整除D.只有x不能被7整除答案A炼技法提能力【方法集训】方法归纳推理与类比推理的应用1.(2019江西吉安教学质量检测,9)斐波那契数列又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89,…,在数学上,斐波那契数列{an}定义为a1=1,a2=1,an+2=an+an+1,斐波那契数列有种看起来很神奇的巧合,如根据an+2=an+an+1可得an=an+2-an+1,所以a1+a2+…+an=(a3-a2)+(a4-a3)+…+(an+2-an+1)=an+2-a2=an+2-1,类比这一方法,可得a12+a22+…+a102=()A.714B.1870C.4895D.4896答案C2.(2018广东肇庆一模,14)观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,……,照此规律,第五个不等式为.答案1+122+132+142+152+162<116【五年高考】A组统一命题·课标卷题组1.(2019课标全国Ⅰ,4,5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是❑√5-12❑√5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是❑√5-12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cmB.175cmC.185cmD.190cm答案B2.(2016课标全国Ⅱ,16,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数...