专题突破练16热点小专题二球与多面体的内切、外接一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π2.(2019江西九江一模,文9)《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺(如图).”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球的表面上,则该球体的表面积为()A.46π平方尺B.41π平方尺C.40π平方尺D.36π平方尺3.(2019山东济宁一模,理9)《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为()A.8❑√23πB.❑√6πC.6πD.8π4.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为()A.13B.4❑√10C.2❑√10D.2❑√175.(2019山东潍坊二模,文10)一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为()A.6πB.12πC.32πD.48π6.(2019湖北八校联考二,文8)已知三棱锥的三视图如图所示,且各顶点在同一球面上,则该球的表面积是()A.12πB.10πC.8πD.6π7.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π8.如图②,需在正方体的盒子内镶嵌一个小球,使得镶嵌后三视图均为图①所示,且面A1C1B截得小球的截面面积为2π3,则该小球的体积为()A.π6B.4π3C.32π3D.8❑√2π39.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A.32❑√3πB.48πC.24πD.16π10.(2019四川第二次诊断,理10)已知一个几何体的正视图,侧视图和俯视图均是直径为10的圆(如图),这个几何体内接一个圆锥,圆锥的体积为27π,则该圆锥的侧面积为()A.9❑√10πB.12❑√11πC.10❑√17πD.40❑√3π311.(2019山西吕梁一模,文12)四棱锥S-ABCD中,底面ABCD为矩形,AD=4,AB=2,且SA+SD=8,当该四棱锥的体积最大时,其外接球的表面积为()A.20πB.25πC.803πD.763π12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.❑√26B.❑√36C.❑√23D.❑√22二、填空题13.(2019四川成都二模,理14)已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=❑√2,则球O的表面积为.14.(2019河北唐山一模,理15)在四面体ABCD中,AB=BC=1,AC=❑√2,且AD⊥CD,该四面体外接球的表面积为.15.(2019湖南六校联考,理15)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD为阳马,侧棱PA⊥底面ABCD,且PA=3,BC=AB=4,设该阳马的外接球半径为R,内切球半径为r,则Rr=.16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.参考答案专题突破练16热点小专题二球与多面体的内切、外接1.A解析设正方体的棱长为a,由a3=8,得a=2.由题意可知,正方体的体对角线为球的直径,故2r=❑√3a2,则r=❑√3.所以该球的表面积为4π×(❑√3)2=12π,故选A.2.B解析由已知得球心在几何体的外部,设球心到几何体下底面的距离为x,则R2=x2+522=(x+1)2+❑√522,解得x=2,∴R2=414,∴该球的表面积S=41π.故选B.3.A解析根据几何体的三视图可知几何体为底面为腰长为❑√2的直角等腰三角形,高为2的直三棱柱.设外接球的半径为R,则(2R)2=(❑√2)2+(❑√2)2+22,解得R=❑√2,所以V=43π(❑√2)3=8❑√23π.故选A.4.A解析由题意可知,直三棱柱ABC-A1B1C1的外接球O的半径R=❑√32+42+1222=132,故球O的直径为13.故选A.5.B解析如图,在四面体ABCD中,∠ABD=∠ABC=∠BCD=∠ACD=90°,AB=BC=CD=2,可得BD=2❑√2,AD=2❑√3,设AD的中点为O,连接OB,OC,则OB=OC=OA=OD,所以AD的中点O即为外接球的球心,故球O半径为❑√3,其表面积为12π,故选B.6.A解析根据三视图,把该三棱锥放入长、宽、高分别为2,❑√3,❑√5的长方体中,如图所示.则三棱...