含绝对值的不等式的解法二.教学目标:掌握一些简单的含绝对值的不等式的解法.三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.四.教学过程:(一)主要知识:1.绝对值的几何意义:是指数轴上点到原点的距离;是指数轴上两点间的距离2.当时,或,;当时,,.(二)主要方法:1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;2.去掉绝对值的主要方法有:(1)公式法:,或.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.(三)例题分析:例1.解下列不等式:(1);(2);(3).解:(1)原不等式可化为或,∴原不等式解集为.(2)原不等式可化为,即,∴原不等式解集为.(3)当时,原不等式可化为,∴,此时;当时,原不等式可化为,∴,此时;当时,原不等式可化为,∴,此时.综上可得:原不等式的解集为.例2.(1)对任意实数,恒成立,则的取值范围是;用心爱心专心(2)对任意实数,恒成立,则的取值范围是.解:(1)可由绝对值的几何意义或的图象或者绝对值不等式的性质得,∴;(2)与(1)同理可得,∴.例3.已知,,且,求实数的取值范围.解:当时,,此时满足题意;当时,,∵,∴,综上可得,的取值范围为.(四)巩固练习:1.的解集是;的解集是;2.不等式成立的充要条件是;3.若关于的不等式的解集不是空集,则;4.不等式成立,则.五.课后作业:《高考计划》考点3,智能训练4,5,6,8,12,14.用心爱心专心