电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

备战高考数学(精讲精练精析)专题10.3 抛物线试题 理(含解析)-人教版高三全册数学试题VIP免费

备战高考数学(精讲精练精析)专题10.3 抛物线试题 理(含解析)-人教版高三全册数学试题_第1页
1/31
备战高考数学(精讲精练精析)专题10.3 抛物线试题 理(含解析)-人教版高三全册数学试题_第2页
2/31
备战高考数学(精讲精练精析)专题10.3 抛物线试题 理(含解析)-人教版高三全册数学试题_第3页
3/31
专题10.3抛物线【三年高考】1.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为()(A)(B)(C)(D)1【答案】C2.【2016高考新课标1卷】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8【答案】B3.【2016高考浙江理数】若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是_______.【答案】【解析】4.【2016高考天津理数】设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为_________.【答案】【解析】抛物线的普通方程为,,,又,则,由抛物线的定义得,所以,则,由得,即,所以,,所以,.5.【2016高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.6.【2015高考浙江,理5】如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,,,其中点,在抛物线上,点在轴上,则与的面积之比是()A.B.C.D.【答案】A.【解析】,故选A.7.【2015高考上海,理5】抛物线()上的动点到焦点的距离的最小值为,则.【答案】【解析】因为抛物线上动点到焦点的距离为动点到准线的距离,因此抛物线上动点到焦点的最短距离为顶点到准线的距离,即8.【2015高考四川,理10】设直线l与抛物线相交于A,B两点,与圆相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是()(A)(B)(C)(D)【答案】D9.【2015高考新课标1,理20】在直角坐标系中,曲线C:y=与直线(>0)交与M,N两点,(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.10.【2014新课标1,理10】.已知抛物线:的焦点为,准线为,是上一点,是直线与的一个焦点,若,则=...3.2【答案】C【解析】过Q作QM⊥直线L于M, ∴,又,∴,由抛物线定义知,选C11.【2014新课标2,理10】设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【答案】D.12.【2014全国大纲,理21】已知抛物线C:的焦点为F,直线与y轴的交点为P,与C的交点为Q,且.(I)求C的方程;(II)过F的直线与C相交于A,B两点,若AB的垂直平分线与C相较于M,N两点,且A,M,B,N四点在同一圆上,求的方程.【解析】(I)设,代入,得.由题设得,解得(舍去)或,∴C的方程为;(II)由题设知与坐标轴不垂直,故可设的方程为,代入得.设则.故的中点为.又的斜率为的方程为.将上式代入,并整理得.设则.故的中点为.由于垂直平分线,故四点在同一圆上等价于,从而即,化简得,解得或.所求直线的方程为或.【三年高考命题回顾】纵观前三年各地高考试题,一方面以选择题、填空题的形式考查抛物线的定义、标准方程及简单几何性质等基础知识,另一方面以解答题的形式考查抛物线的概念和性质、直线与抛物线的位置关系的综合问题,着力于数学思想方法及数学语言的考查,题目的运算量一般不是很大,属于中档题,分值为5-12分.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,抛物线的的定义、标准方程及简单几何性质是高考考试的重点,每年必考,考查方面其它利用性质求抛物线方程,求弦长,求抛物线的最值或范围问题,过定点问题,定值问题等.预测2017年高考,对本节内容的考查仍将以求抛物线的方程和研究抛物线的性质为主,仍以选择题、填空、解答题的第一小题的形式考查抛物线的定义、标准方程及抛物线的几何性质,难度仍为容易题或中档题,以解答题的第二问的形式考查直线与抛物线的位置关系,难度仍难题,分值保持在5-12分.在备战2017年高考中,要熟记抛物线的定义,会根据题中的条件用待定系数法、定义法等方法求抛物线的标准方程,会根据条件研究抛物线的几何性质,会用设而不求思想处理直线与抛物线的位置关系,重...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

备战高考数学(精讲精练精析)专题10.3 抛物线试题 理(含解析)-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部