专题10.3抛物线试题文【三年高考】1.【2016高考四川文科】抛物线的焦点坐标是()(A)(0,2)(B)(0,1)(C)(2,0)(D)(1,0)【答案】D【解析】由题意,的焦点坐标为,故选D.2.【2016高考新课标2文数】设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()(A)(B)1(C)(D)2【答案】D3.【2016高考新课标1文数】在直角坐标系中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(I)求;(II)除H以外,直线MH与C是否有其它公共点?说明理由.4.【2016高考浙江文数】如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(I)求p的值;(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.【解析】(Ⅰ)由题意可得抛物线上点A到焦点F的距离等于点A到直线x=-1的距离.由抛物线的定义得,即p=2.(Ⅱ)由(Ⅰ)得抛物线的方程为,可设.因为AF不垂直于y轴,可设直线AF:x=sy+1,,由消去x得,故,所以.又直线AB的斜率为,故直线FN的斜率为,从而的直线FN:,直线BN:,所以,设M(m,0),由A,M,N三点共线得:,于是,经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是.5.【2016高考新课标Ⅲ文数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.6.【2015高考陕西,文3】已知抛物线的准线经过点,则抛物线焦点坐标为()A.B.C.D.【答案】【解析】由抛物线得准线,因为准线经过点,所以,所以抛物线焦点坐标为,故答案选7.【2015高考上海,文7】抛物线上的动点到焦点的距离的最小值为1,则.【答案】2【解析】依题意,点为坐标原点,所以,即.8.【2015高考浙江,文19】如图,已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点.(1)求点A,B的坐标;(2)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.9.【2015高考湖南,文20】已知抛物线的焦点F也是椭圆的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与同向.(I)求的方程;(II)若,求直线的斜率.10.【2014新课标1,文10】已知抛物线C:的焦点为,是C上一点,=,则=()A.4B.2C.1D.8【答案】C.【解析】由题知=,由抛物线焦半径公式知,===,解得=1,故选C.11.【2014新课标2,文10】.设F为抛物线的焦点,过F且倾斜角为的直线交于C于两点,则=A.B.6C.12D.【答案】C.12.【2014江西,文20】如图,已知抛物线,过点M(0,2)任作一直线与相交于两点,过点作轴的平行线与直线相交于点(为坐标原点).(1)证明:动点在定直线上;(2)作的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.【三年高考命题回顾】纵观前三年各地高考试题,一方面以选择题、填空题的形式考查抛物线的定义、标准方程及简单几何性质等基础知识,另一方面以解答题的形式考查抛物线的概念和性质、直线与抛物线的位置关系的综合问题,着力于数学思想方法及数学语言的考查,题目的运算量一般不是很大,属于中档题,分值为5-12分.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,抛物线的的定义、标准方程及简单几何性质是高考考试的重点,每年必考,考查方面其它利用性质求抛物线方程,求弦长,求抛物线的最值或范围问题,过定点问题,定值问题等.预测2017年高考,对本节内容的考查仍将以求抛物线的方程和研究抛物线的性质为主,仍以选择题、填空、解答题的第一小题的形式考查抛物线的定义、标准方程及抛物线的几何性质,难度仍为容易题或中档题,以解答题的第二问的形式考查直线与抛物线的位置关系,难度仍难题,分值保持在5-12分.在备战2017年高考中,要熟记抛物线的定义,会根据题中的条件用待定系数法、定义法等方法求抛物线的标准方程,会根据条件研究抛物线的几何性质,会用设而不求思想处理直线与抛物线的位置关系,重点...