第2课时等比数列的前n项和公式的性质及应用[课时作业][A组基础巩固]1.设首项为1,公比为的等比数列{an}的前n项和为Sn,则()A.Sn=2an-1B.Sn=3an-2C.Sn=4-3anD.Sn=3-2an解析:Sn===3-2an.答案:D2.设Sn为等比数列{an}的前n项和,8a2-a5=0,则=()A.5B.8C.-8D.15解析: 8a2-a5=0,∴8a1q=a1q4,∴q3=8,∴q=2,∴==1+q2=5.答案:A3.已知在等比数列{an}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A.514B.513C.512D.510解析:由已知得解得q=2或q=. q为整数,∴q=2.∴a1=2,∴S8==29-2=510.答案:D4.设{an}是由正数组成的等比数列,Sn为其前n项和,已知a2a4=1,S3=7,则S5=()A.B.C.D.解析:由a2a4=1⇒a1=,又S3=a1(1+q+q2)=7,联立得:=0,∴q=,a1=4,S5==.答案:B5.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=________.解析: a1=2,an+1=2an,∴数列{an}是首项为2,公比为2的等比数列,∴Sn==126,∴2n=64,∴n=6.答案:66.等比数列{an}的公比q>0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=________.解析:由an+2+an+1=6an,得qn+1+qn=6qn-1,即q2+q-6=0,q>0,解得q=2,又 a2=1,∴a1=,∴S4==.答案:7.设Sn为等比数列{an}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则an=________.解析:设等比数列{an}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2,S1=a1=1,S2=1+q,S3=1+q+q2,又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以an=a1qn-1=3n-1.答案:3n-18.设{an}是由正数组成的等比数列,Sn是其前n项和,证明:log0.5Sn+log0.5Sn+2>2log0.5Sn+1.证明:设{an}的公比为q,由已知得a1>0,q>0. Sn+1=a1+qSn,Sn+2=a1+qSn+1,∴SnSn+2-S=Sn(a1+qSn+1)-(a1+qSn)Sn+1=Sna1+qSnSn+1-a1Sn+1-qSnSn+1=a1(Sn-Sn+1)=-a1an+1<0,∴Sn·Sn+2log0.5S,即log0.5Sn+log0.5Sn+2>2log0.5Sn+1.9.设等比数列{an}的公比q<1,前n项和为Sn,已知a3=2,S4=5S2,求{an}的通项公式.解析:由题设知a1≠0,Sn=,则由②得1-q4=5(1-q2),(q2-4)(q2-1)=0.(q-2)(q+2)(q-1)(q+1)=0,因为q<1,解得q=-1或q=-2.当q=-1时,代入①得a1=2,通项公式an=2×(-1)n-1;当q=-2时,代入①得a1=;通项公式an=×(-2)n-1.综上,当q=-1时,an=2×(-1)n-1;当q=-2时,an=×(-2)n-1.[B组能力提升]1.在等比数列{an}中,公比q=2,log2a1+log2a2+log2a3+…+log2a10=35,则S10=()A.B.C.235D.解析:由题意知log2(a1·a2·…·a10)=35,∴a1·a2·a3·…·a10=235.∴a1·(a1q)·(a1q2)·…·(a1q9)=235.∴aq1+2+3+…+9=235.∴a·245=235,即a=,∴a1=.∴a1+a2+…+a10==.答案:A2.已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0解析:因为{an}是等差数列,a3,a4,a8成等比数列,所以(a1+3d)2=(a1+2d)(a1+7d)⇒a1=-d,所以S4=2(a1+a4)=2(a1+a1+3d)=-d,所以a1d=-d2<0,dS4=-d2<0.答案:B3.一个项数是偶数的等比数列,它的偶数项的和是奇数项的和的两倍,它的首项为1,且中间两项的和为24,则此等比数列的项数为________.解析:由题意可知q=2,设该数列为a1,a2,a3,…,a2n,则an+an+1=24,又a1=1,∴qn-1+qn=24,即2n-1+2n=24,解得n=4,∴项数为8项.答案:84.(2016·高考全国Ⅰ卷)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________.解析:设{an}的公比为q,于是a1(1+q2)=10,①a1(q+q3)=5,②联立①②得a1=8,q=,∴an=24-n,∴a1a2…an=23+2+1+…+(4-n)=2-n2+n=2-(n-)2+≤26=64.∴a1a2…an的最大值为64.答案:645.已知等差数列{an}的前n项和为Sn,a3=5,S...