第3课时数列的通项公式[课时作业][A组基础巩固]1.设数列{an}中,a1=2,an+1=an+3,则数列{an}的通项公式为()A.an=3nB.an=3n+1C.an=3n-1D.an=3n-1答案:C2.数列{an}中,若a1=1,an+1=2an+3(n≥1),则该数列的通项an=________.()A.2n+1-3B.2n-3C.2n+3D.2n-1-3解析:an+1+3=2(an+3),∴此数列是以a1+3为首项,2为公比的等比数列,an+3=(1+3)×2n-1,即an=2n+1-3.答案:A3.设数列{an}满足a1+2a2+22a3+…+2n-1an=(n∈N*),则通项公式是()A.an=B.an=C.an=D.an=解析:设|2n-1·an|的前n项和为Tn, 数列{an}满足a1+2a2+22a3+…+2n-1an=(n∈N*),∴Tn=,∴2n-1an=Tn-Tn-1=-=,∴an==,经验证,n=1时也成立,故an=.故选C.答案:C4.已知数列{an}满足a1=1,且an=an-1+n(n≥2,且n∈N*),则数列{an}的通项公式为()A.an=B.an=C.an=n+2D.an=(n+2)3n解析:an=an-1+n(n≥2,且n∈N*)⇔=+1,即bn=,则数列{bn}为首项b1==3a1=3,公差为1的等差数列,所以bn=3+(n-1)×1=n+2,所以an=.答案:B5.若数列{an}的前n项和为Sn,且an=2Sn-3,则{an}的通项公式是________.解析:由an=2Sn-3得an-1=2Sn-1-3(n≥2),两式相减得an-an-1=2an(n≥2),∴an=-an-1(n≥2),=-1(n≥2).故{an}是公比为-1的等比数列,令n=1得a1=2a1-3,∴a1=3,故an=3·(-1)n-1.答案:an=3·(-1)n-16.已知数列{an}满足a1=1,an+1=an+2n-1(n∈N*),则an=________.解析: a1=1,an+1=an+2n-1(n∈N*),∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n-3)+(2n-5)+…+1+1=+1=n2-2n+2.答案:n2-2n+27.在数列{an}中,a1=2,an=3an-1+2(n≥2,n∈N*),则通项an=________.解析:由an=3an-1+2,得an+1=3(an-1+1)(n≥2). a1=2,∴a1+1=3≠0,∴数列{an+1}是以3为首项,3为公比的等比数列,∴an+1=3·3n-1=3n,即an=3n-1.答案:3n-18.已知数列{an}满足a1=2,(n+1)an=(n-1)an-1(n≥2,n∈N*),则=________,数列{an}的通项公式为________.解析:当n≥2时,由(n+1)an=(n-1)an-1得=,故=·=×=.an=···…···a1=×××…×××2=×2=.又a1=2满足上式,故an=(n∈N*)答案:an=(n∈N*)9.已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和,求{an}的通项公式.解析: Sn=1-an,①∴Sn+1=1-an+1,②②-①得an+1=-an+1+an,∴an+1=an,(n∈N*)又n=1时,a1=1-a1,∴a1=.∴an=·()n-1=()n(n∈N*).10.已知数列{an}满足a1=,an+1=·an,求an.解析:由题意知an≠0,因为an+1=·an,所以=,故an=··…··a1=··…··=.[B组能力提升]1.已知数列{an}满足a1=,a1+a2+…+an=n2an,则an为()A.an=B.an=C.an=D.an=解析: a1+a2+…+an=n2an,①∴a1+a2+…+an-1=(n-1)2an-1(n≥2,n∈N*),②①-②得an=n2an-(n-1)2an-1.即=(n≥2,n∈N*).∴···…·=××××…××.即=,又a1=,∴an=,当n=1时,a1==成立,∴an=(n∈N*).答案:A2.已知{an}是首项为1的正项数列,且(n+1)a-na+anan+1=0,则{an}的通项公式为an=()A.B.()n-1C.D.()n解析: (n+1)a-na+anan+1=0.∴(an+1+an)·[(n+1)an+1-nan]=0. an>0,∴an+1+an>0.∴=,即an+1=an.∴an=an-1=·an-2=…=···…···a1=(n≥2).当n=1时,a1=也成立,∴an=.答案:A3.对于数列{an},满足a1=1,an+1=an+,则an=________.解析: an+1-an=-,∴(a2-a1)+(a3-a2)+…+(an-an-1)=(-1)+(-)+…+(-),即an=(n≥2),将n=1代入也成立,∴an=.答案:4.设数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2)(n∈N*),则通项an=________.解析:数列{nan}的前n项和为a1+2a2+3a3+…+nan=n(n+1)(n+2).①其前n-1项和为a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1).②①-②,得nan=n(n+1)[(n+2)-(n-1)]=3n(n+1),即an...