2.3.1平面向量基本定理1.设e1,e2是同一平面内的两个向量,则有()A.e1,e2一定平行B.e1,e2的模相等C.同一平面内的任一向量a都有a=λe1+μe2(μ,λ∈R)D.若e1,e2不共线,则同一平面内的任一向量a都有a=λe1+μe2(μ,λ∈R)【解析】选D.只有e1,e2不共线,才可以作为一组基底,表示平面内的任意向量,故D正确.2.已知e1,e2不共线,则不可以作为一组基底的是()A.e1+e2和e1-e2B.e1-2e2和6e2-3e1C.2e1-e2和e2D.e1-e2和2e1-e2【解析】选B.因为6e2-3e1=-3(e1-2e2),所以e1-2e2与6e2-3e1共线,故e1-2e2和6e2-3e1不可以作为一组基底.由e1,e2不共线,可知A,C,D中三组向量均不共线,可以作为基底.3.已知向量a=e1-2e2,b=2e1+e2,其中e1,e2不共线,则a+b与c=6e1-2e2的关系为()A.不共线B.共线C.相等D.无法确定【解析】选B.因为a+b=(e1-2e2)+(2e1+e2)=3e1-e2,所以c=6e1-2e2=2(a+b),故a+b与c=6e1-2e2共线.4.已知等腰三角形ABC中,AB=AC,点D是BC边的中点,∠BAC=80°,则向量与向量的夹角为.【解析】由题意,∠BAD=40°,所以向量与向量的夹角为140°.答案:140°5.设,不共线,P点在AB上.求证:=λ+μ,且λ+μ=1(λ,μ∈R).【证明】因为P点在AB上,所以,共线,所以=t(t∈R),故=+=+t=+t(-)=(1-t)+t,令λ=1-t,μ=t,则有=λ+μ,且λ+μ=1(λ,μ∈R).