第1课时函数的概念分层演练综合提升A级基础巩固1.下列四个区间能表示数集A={x|0≤x<5,或x>10}的是()A.(0,5)∪(10,+∞)B.[0,5)∪(10,+∞)C.(0,5]∪[10,+∞)D.[0,5]∪(10,+∞)答案:B2.下列图象中表示函数图象的是()ABCD答案:C3.f(x)=❑√1+x+x1-x的定义域是()A.[-1,+∞)B.(-∞,-1]C.RD.[-1,1)∪(1,+∞)答案:D4.若[a,3a-1]为一确定区间,则a的取值范围是(12,+∞).5.已知f(x)=1+x21-x2,(1)求f(x)的定义域;(2)若f(a)=2,求a的值.解:(1)由题意,知1-x2≠0,解得x≠±1,所以f(x)的定义域为(-∞,-1)∪(-1,1)∪(1,+∞).(2)由f(a)=2,即1+a21-a2=2,解得a=±❑√33.B级能力提升6.下列四个方程中表示y是x的函数的是()①x-2y=6;②x2+y=1;③x+y2=1;④x=❑√y.A.①②B.①④C.③④D.①②④解析:判断y是否为x的函数,主要是看是否满足函数的定义,①②④符合要求,故选D.答案:D7.函数y=f(x)的图象与直线x=m的交点的个数为()A.可能有无数个B.只有一个C.至多一个D.至少一个解析:根据函数的定义,一个自变量x只能对应一个函数值y,而y=f(x)的定义域中不一定含有m.因此,有可能只有一个交点,有可能没有交点,故选C.答案:C8.如图,用长为1的铁丝做一个下部为矩形,上部为半圆形的框架,设半圆的半径为x,求此框架围成的面积y与x间的函数解析式(写出定义域).解:由题意,得AB=2x,lCD=πx,所以AD=1-2x-πx2,所以下部矩形的面积为2x·1-2x-πx2.又因为上部半圆的面积为πx22.所以y=2x·1-2x-πx2+πx22=-4+π2x2+x.因为2x>0,且1-2x-πx2>0,所以0