课时5换底公式知识点换底公式及应用1.若2.5x=1000,0.25y=1000,则-等于()A.B.3C.-D.-3答案A解析由2.5x=1000,0.25y=1000得x=log2.51000=,y=log0.251000=,∴-=-=.2.若log34·log48·log8m=log416,则m=________.答案9解析由换底公式,得××==log416=2,∴lgm=2lg3=lg9,∴m=9.(2)已知lg2=a,lg3=b,那么log512=________.答案(1)4(2)解析(2)log512===.4.计算:(log43+log83)(log32+log92).解原式==·=+++=.5.已知x,y,z为正数,3x=4y=6z,2x=py.(1)求p;(2)求证:-=.解(1)设3x=4y=6z=k(显然k>0,且k≠1),则x=log3k,y=log4k,z=log6k,由2x=py,得2log3k=plog4k=p·,∵log3k≠0,∴p=2log34.(2)证明:-=-=logk6-logk3=logk2=logk4=,∴-=.6.计算:(1)log89×log2732;(2)log927;(3)log2×log3×log5.解(1)log89×log2732=×=×=×=.(2)log927====.(3)log2×log3×log5=log25-3×log32-5×log53-1=-3log25×(-5log32)×(-log53)=-15×××=-15.易错点换底公式的应用7.设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.logab·logbc=logcaB.logab·logca=logcbC.loga(bc)=logab·logacD.loga(b+c)=logab+logac易错分析由于对换底公式掌握不清而致错.答案B正解对于A,logab·logbc=logab·=logac,C,D中公式运用错误,loga(bc)=logab+logac.一、选择题1.(log29)·(log34)=()A.B.C.2D.4答案D解析(log29)·(log34)=×=×=4.2.已知ln5=a,ln3=b,那么log1527用含a,b的代数式表示为()A.B.C.D.答案B解析因为log1527===,故选B.3.若log5·log36·log6x=2,则x等于()A.9B.C.25D.答案D解析由换底公式,得原式=··=2,lgx=-2lg5,x=5-2=.答案C解析5.设log83=p,log35=q,则lg5等于()A.p2+q2B.(3p+2q)C.D.pq答案C解析∵log83===p,∴lg3=3plg2.∵log35==q,∴lg5=qlg3=3pqlg2=3pq(1-lg5),∴lg5=,故选C.二、填空题6.若logab·log3a=4,则b的值为________.答案81解析logab·log3a=4,即log3a·=4,即log3b=4,∴34=b,∴b=81.7.方程log3(x-1)=log9(x+5)的解是________.答案4解析由换底公式,得log9(x+5)=log3(x+5).∴原方程可化为2log3(x-1)=log3(x+5),即log3(x-1)2=log3(x+5),∴(x-1)2=x+5.∴x2-3x-4=0,解得x=4或x=-1.又∵∴x>1,故x=4.8.设f(n)=logn+1(n+2)(n∈N*),现把满足乘积f(1)·f(2)…f(n)为整数的n叫做“贺数”,则在区间(1,2018)内所有“贺数”的个数是________.答案9解析f(n)=logn+1(n+2)=,∴f(1)f(2)…f(n)=··…·==log2(n+2).∵n∈(1,2018),∴n+2∈(3,2020),∵210=1024,211=2048,∴在(3,2020)内含有22,23,…,210共9个2的幂,故在区间(1,2018)内所有“贺数”的个数为9.三、解答题9.若2a=3,3b=5,试用a与b表示log4572.解∵2a=3,3b=5,∴log23=a,log35=b,∴log25=log23·log35=ab,∴log4572====.10.设0