第1课时诱导公式一~四[学生用书P84(单独成册)])[A基础达标]1.tan的值为()A.B.C.D.1解析:选B.tan=tan=tan=.2.sin600°+tan(-300°)的值是()A.-B.C.-+D.+解析:选B.原式=sin(360°+240°)+tan(-360°+60°)=-sin60°+tan60°=.3.若sin(π+α)+sin(-α)=-m,则sin(3π+α)+2sin(2π-α)等于()A.-mB.-mC.mD.m解析:选B.因为sin(π+α)+sin(-α)=-2sinα=-m,所以sinα=,则sin(3π+α)+2sin(2π-α)=-sinα-2sinα=-3sinα=-m.故选B.4.设f(α)=,则f的值为()A.B.-C.D.-解析:选D.f(α)===-.所以f=-=-=-.5.已知tan=,则tan=()A.B.-C.D.-解析:选B.因为tan=tan=-tan,所以tan=-.6.已知sin(π-α)=log8,且α∈,则tan(2π-α)的值为________.解析:因为sin(π-α)=sinα=log8=-,所以tan(2π-α)=-tanα=-=-=.答案:7.下列三角函数值:①sin;②sin;③sin,其中n∈N.其中与sin数值相同的序号是________.解析:①sin=②sin=sin;③sin=sin.故②③正确.答案:②③8.当θ=时,(k∈Z)的值等于________.解析:原式==-.当θ=时,原式=-=2.答案:29.求下列三角函数式的值:(1)sin(-330°)·cos210°;(2)sin(-1200°)·tan(-30°)-cos585°·tan(-1665°).解:(1)sin(-330°)·cos210°=sin(30°-360°)·cos(180°+30°)=sin30°·(-cos30°)=×=-.(2)sin(-1200°)·tan(-30°)-cos585°·tan(-1665°)=-sin1200°·-cos(720°-135°)·tan(-9×180°-45°)=sin(1080°+120°)-cos135°·tan(-45°)=-×(-1)=.10.化简下列各式:(1)(k∈Z);(2).解:(1)当k=2n(n∈Z)时,原式====-1;当k=2n+1(n∈Z)时,原式====-1.综上,原式=-1.(2)原式====.[B能力提升]1.已知tan(3π-α)=2,则的值为________.解析:因为tan(3π-α)=2,所以tanα=-2,原式可化为===.答案:2.若函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,且满足f(2018)=2,则f(2019)=________.解析:因为f(2018)=asin(2018π+α)+bcos(2018π+β)=2,所以f(2019)=asin(2019π+α)+bcos(2019π+β)=asin[π+(2018π+α)]+bcos[π+(2018π+β)]=-[asin(2018π+α)+bcos(2018π+β)]=-2.答案:-23.计算下列各式的值:(1)cos+cos+cos+cos;(2)sin420°cos330°+sin(-690°)cos(-660°).解:(1)原式=+=+=+=0.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)·cos(-2×360°+60°)=sin60°cos30°+sin30°cos60°=×+×=1.4.(选做题)已知tan=a.求证:=.证明:=====.