三角函数的积化和差与和差化积1.若cos(α+β)cos(α-β)=,则cos2α-sin2β=()A.B.C.D.2.直角三角形的两个锐角分别为A和B,则sinAsinB()A.有最大值和最小值0B.有最大值,但无最小值C.既无最大值,也无最小值D.有最大值1,但无最小值3.化简的结果为()A.B.C.D.4.已知α-β=,且cosα-cosβ=,则cos(α+β)等于()A.B.C.D.5.如果,那么等于()A.B.C.D.6.cos20°+cos60°+cos100°+cos140°的值为________.7.若cos2α-cos2β=m,则sin(α+β)sin(α-β)=________.8.若x为锐角三角形的内角,则函数y=+sinx的值域为________.9.求的值.10.已知△ABC的三个内角A,B,C满足A+C=2B,,求的值.参考答案1.解析:cos(α+β)cos(α-β)=(cos2α+cos2β)=[(2cos2α-1)+(1-2sin2β)]=cos2α-sin2β,∵cos(α+β)cos(α-β)=,∴cos2α-sin2β=.答案:C2.解析:因为A+B=,sinAsinB=[cos(A-B)-cos(A+B)]=cos(A-B),又<A-B<,则0<cos(A-B)≤1,故0<cos(A-B)≤,即sinAsinB有最大值,无最小值.答案:B3.解析:==.答案:C4.解析:由cosα-cosβ=得,又α-β=,∴,∴cos(α+β)=1-2=1-2×=.答案:C5.解析:=.答案:B6.解析:cos20°+cos60°+cos100°+cos140°=cos20°++2cos120°cos20°=cos20°+-cos20°=.答案:7.解析:sin(α+β)sin(α-β)=(cos2α-cos2β)=[(2cos2α-1)-(2cos2β-1)]=cos2β-cos2α=-m.答案:-m8.解析:y=+sinx=2=,由已知得,所以<≤1.所以y∈.答案:9.解:===8cos10°sin20°sin40°=4(sin30°+sin10°)sin40°=2sin40°+4sin40°sin10°=2sin40°-2(cos50°-cos30°)=.10.解:由题设条件知B=60°,A+C=120°,∴,∴.将上式化简为cosA+cosC=cosAcosC,则=[cos(A+C)+cos(A-C)].将=cos60°=,cos(A+C)=cos120°=代入上式,得=-cos(A-C).将cos(A-C)=2-1代入上式并整理,得,即.∵+3≠0,∴.∴.