3.3三角函数的积化和差与和差化积自我小测1.化简的结果为()A.tanαB.tan2αC.cotαD.cot2α2.若cos(α+β)cos(α-β)=,则cos2α-sin2β=()A.-B.-C.D.3.化简cos+cos+cos的结果为()A.sinB.sinC.-D.-cos4.sinα+sinβ=(cosβ-cosα),且α∈(0,π),β∈(0,π),则α-β等于()A.-B.-C.D.5.已知α-β=,且cosα-cosβ=,则cos(α+β)等于()A.B.C.D.6.函数y=coscos的最大值是__________.7.cos72°-cos36°的值为__________.8.若cos2α-cos2β=m,则sin(α+β)sin(α-β)=________.9.求证:2sin2θsin2φ+2cos2θcos2φ=1+cos2θcos2φ.10.已知△ABC的三个内角A,B,C满足(1)A+C=2B;(2)+=-,求cos的值.参考答案1.答案:B2.答案:C3.答案:C4.答案:D5.答案:C6.答案:7.解析:cos72°-cos36°=-2sin54°sin18°===-.答案:-8.解析:sin(α+β)sin(α-β)=-(cos2α-cos2β)=-[(2cos2α-1)-(2cos2β-1)]=cos2β-cos2α=-m.答案:-m9.证明:左边=2··+2··=(1-cos2θ-cos2φ+cos2θcos2φ)+(1+cos2θ+cos2φ+cos2θcos2φ)=(2+2cos2θcos2φ)=1+cos2θcos2φ=右边.所以原式成立.10.解:由题设条件知B=60°,A+C=120°,因为=-,所以+=-.所以cosA+cosC=-2cosAcosC.利用和差化积及积化和差公式得,2coscos=-[cos(A+C)+cos(A-C)],所以cos=-,化简得4cos2+2cos-3=0,又=0,因为2cos+3≠0,所以cos=.