课时作业(十三)等比数列的前n项和A组基础巩固1.若数列{an}的前n项和为Sn=3n+a(a为常数),则数列{an}是()A.等比数列B.仅当a=-1时,是等比数列C.不是等比数列D.仅当a=0时,是等比数列解析:an==当a=-1时,a1=2适合通项an=2×3n-1,故数列{an}是等比数列.当a≠-1时,{an}不是等比数列,故选B.答案:B2.在等比数列{an}中,公比q=-2,S5=44,则a1的值为()A.4B.-4C.2D.-2解析:S5=,∴44=,∴a1=4,故选A.答案:A3.等比数列{an}的公比q<0,已知a2=1,an+2=an+1+2an,则{an}的前2014项和等于()A.2010B.-1C.1D.0解析:由an+2=an+1+2an,得qn+1=qn+2qn-1,即q2-q-2=0,又q<0,解得q=-1,又a2=1,∴a1=-1,∴S2014==0.答案:D4.已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于()A.-6(1-3-10)B.(1-310)C.3(1-3-10)D.3(1+3-10)解析:先根据等比数列的定义判断数列{an}是等比数列,得到首项与公比,再代入等比数列前n项和公式计算.由3an+1+an=0,得=-,故数列{an}是公比q=-的等比数列.又a2=-,可得a1=4.所以S10==3(1-3-10).答案:C5.已知{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5=()A.35B.33C.31D.29解析:设等比数列{an}的公比为q,则由等比数列的性质知a2·a3=a1·a4=2a1,即a4=2.由a4与2a7的等差中项为知,a4+2a7=2×,即a7===.∴q3==,即q=.∴a4=a1q3=a1×=2,即a1=16.∴S5==31.答案:C6.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列的前5项和为()A.或5B.或5C.D.解析:由题意知q≠1, 9(a1+a2+a3)=a1+a2+…+a6,∴8(a1+a2+a3)=a4+a5+a6=(a1+a2+a3)q3,∴q=2,an=2n-1,∴++…+=++…+=.答案:C7.在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式为an=________.解析: q=4,S3=a1(1+q+q2)=21,∴a1==1.∴an=a1qn-1=4n-1.答案:4n-18.设等比数列{an}的公比q=,前n项和为Sn,则=________.解析:a4=a13=a1,S4==a1,∴=15.答案:159.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3.1(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn;(2)求数列{an·bn}的前n项和Sn.解:(1)设公差为d(d≠0),公比为q.由已知得⇒∴an=3n-2,bn=4n-1.(2)由(1)可知an·bn=(3n-2)·4n-1,∴Sn=1+4×4+7×42+…+(3n-2)·4n-1,①4Sn=4+4×42+7×43+…+(3n-2)·4n.②由①-②得-3Sn=1+3×4+3×42+3×43+…+3·4n-1-(3n-2)·4n=1+3×-(3n-2)·4n=1+4n-4-(3n-2)·4n=-3-3(n-1)·4n,∴Sn=1+(n-1)·4n(n∈N*).10.设数列{an}满足a1=2,an+1-an=3·22n-1.(1)求数列{an}的通项公式;(2)令bn=nan,求数列{bn}的前n项和Sn.解:(1)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1,而a1=2,满足上式,所以数列{an}的通项公式为an=22n-1.(2)由bn=nan=n·22n-1,知Sn=1×2+2×23+3×25+…+n·22n-1,①从而22·Sn=1×23+2×25+3×27+…+n·22n+1.②①-②,得(1-22)Sn=2+23+25+…+22n-1-n·22n+1,即Sn=[(3n-1)22n+1+2].B组能力提升11.设数列{xn}满足log2xn+1=1+log2xn(x∈N*)且x1+x2+…+x10=10,记{xn}的前n项和为Sn,则S20=()A.1025B.1024C.10250D.10240解析:由log2xn+1=1+log2xn=log2(2xn),∴xn+1=2xn,∴{xn}为等比数列,且公比q=2,∴S20=S10+q10S10=10+210×10=10250,故选C.答案:C12.在等比数列{an}中,a1=,a4=-4,则公比q=________;|a1|+|a2|+…+|an|=________.解析:设等比数列{an}的公比为q,则a4=a1q3,即-4=q3.解得q=-2.等比数列{|an|}的公比为|q|=2,则|an|=×2n-1,所以|a1|+|a2|+…+|an|=(1+2+22+…+2n-1)=(2n-1)=2n-1-.答案:-22n-1-13.已知数列{an}的前n项和为Sn...