课时作业(十一)等比数列A组基础巩固1.若等比数列{an}满足anan+1=16n,则公比为()A.2B.4C.8D.16解析:由anan+1=16n,知a1a2=16,a2a3=162,后式除以前式得q2=16,∴q=±4.∵a1a2=aq=16>0,∴q>0,∴q=4.答案:B2.在等比数列{an}中,a2010=8a2007,则公比q的值为()A.2B.3C.4D.8解析:∵a2010=8a2007,∴q3==8,∴q=2.答案:A3.随着市场的变化与生产成本的降低,每隔5年计算机的价格降低,2000年价格为8100元的计算机到2015年时的价格应为()A.900元B.2200元C.2400元D.3600元解析:a4=8100·3=2400.答案:C4.各项都是正数的等比数列{an}中,a2,a3,a1成等差数列,则的值为()A.B.或C.D.解析:设{an}公比为q,∵a2,a3,a1成等差数列,∴a3=a1+a2,∴a1q2=a1+a1q.∴q2-q-1=0,解得q=.∵数列各项都是正数,∴q>0,∴q=,∴=q=.故选C.答案:C5.等比数列x,3x+3,6x+6,…的第四项等于()A.-24B.0C.12D.24解析:由题意知(3x+3)2=x(6x+6),即x2+4x+3=0,解得x=-3或x=-1(舍去),所以等比数列的前三项是-3,-6,-12,则第四项为-24.答案:A6.在数列{an}中,a1=1,点(an,an+1)在直线y=2x上,则a4的值为()A.7B.8C.9D.16解析:∵点(an,an+1)在直线y=2x上,∴an+1=2an,∵a1=1≠0,∴an≠0,∴{an}是首项为1,公比为2的等比数列,∴a4=1×23=8.答案:B7.若数列{an}为等比数列,且a1+a2=1,a3+a4=4,则a9+a10=________.解析:∵{an}是等比数列,∴a1+a2,a3+a4,a5+a6,a7+a8,a9+a10为等比数列,∴a9+a10=1×44=256.答案:2568.若数列{an}的前n项和Sn=an+,则{an}的通项公式是an=________.解析:当n=1时,S1=a1+,∴a1=1.当n≥2时,an=Sn-Sn-1=an+-=(an-an-1),∴an=-2an-1,即=-2,∴{an}是以1为首项的等比数列,其公比为-2,∴an=1×(-2)n-1,即an=(-2)n-1.答案:(-2)n-19.已知数列{an}的前n项和Sn=2an+1,求证:{an}是等比数列,并求出通项公式.证明:∵Sn=2an+1,∴Sn+1=2an+1+1,∴an+1=Sn+1-Sn=(2an+1+1)-(2an+1)=2an+1-2an.∴an+1=2an,又∵S1=2a1+1=a1,∴a1=-1≠0.又由an+1=2an知an≠0,∴=2,∴{an}是等比数列,∴an=-1×2n-1=-2n-1.110.数列{an}是公差不为零的等差数列,且a5,a8,a13是等比数列{bn}中相邻的三项,若b2=5,求bn.解:∵{an}是等差数列,∴a5=a1+4d,a8=a1+7d,a13=a1+12d,又a5,a8,a13是等比数列{bn}中相邻的三项,∴a=a5a13,即(a1+7d)2=(a1+4d)·(a1+12d),解得d=2a1.设等比数列{bn}的公比为q(q≠0),则q==,又b2=b1q=5,即b1=5,解得b1=3,∴bn=3·n-1.B组能力提升11.已知等比数列{an}中,a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9等于()A.2B.4C.8D.16解析:∵a3a11=a=4a7,a7≠0,∴a7=4,b7=4.∵{bn}是等差数列,∴b5+b9=2b7=8,故选C.答案:C12.已知等比数列{an}为递增数列,且a=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=________.解析:根据条件求出首项a1和公比q,再求通项公式,由2(an+an+2)=5an+1⇒2q2-5q+2=0⇒q=2或,由a=a10=a1q9>0⇒a1>0,又数列{an}递增,所以q=2.a=a10>0⇒(a1q4)2=a1q9⇒a1=q=2,所以数列{an}的通项公式为an=2n.答案:2n13.设a,b,c是实数,3a,4b,5c成等比数列,且,,成等差数列,求+的值.解:∵3a,4b,5c成等比数列,∴16b2=15ac.①∵,,成等比数列,∴=+.②由①,得·15ac=64.③②代入③,得2·15ac=64,∴ac=,∴+=.14.设数列{an}的前n项和为Sn,已知a1=1,an+1=Sn(n=1,2,3,…).求证:数列是等比数列.证明:∵an+1=Sn+1-Sn,an+1=Sn,∴Sn+1-Sn=Sn,∴n(Sn+1-Sn)=(n+2)Sn,∴nSn+1=2(n+1)Sn,∴=2,又∵=1≠0,∴数列是以1为首项,2为公比的等比数列.2