§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定【课时目标】1.掌握直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用定理证明直线与平面垂直.3.知道斜线在平面上的射影的概念,斜线与平面所成角的概念.1.直线与平面垂直(1)定义:如果直线l与平面α内的________________直线都________,就说直线l与平面α互相垂直,记作________.直线l叫做平面α的________,平面α叫做直线l的________.(2)判定定理文字表述:一条直线与一个平面内的________________________都垂直,则该直线与此平面垂直.符号表述:⇒l⊥α.2.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的________所成的________,叫做这条直线和这个平面所成的角.如图所示,________就是斜线AP与平面α所成的角.(2)当直线AP与平面垂直时,它们所成的角的度数是90°;当直线与平面平行或在平面内时,它们所成的角的度数是________;线面角θ的范围:________.一、选择题1.下列命题中正确的个数是()①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l与平面α内的一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.A.0B.1C.2D.32.直线a⊥直线b,b⊥平面β,则a与β的关系是()A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4B.3C.2D.16.从平面外一点向平面引一条垂线和三条斜线,斜足分别为A,B,C,如果这些斜线与平1面成等角,有如下命题:①△ABC是正三角形;②垂足是△ABC的内心;③垂足是△ABC的外心;④垂足是△ABC的垂心.其中正确命题的个数是()A.1B.2C.3D.4二、填空题7.在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是________.8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB,PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.能力提升12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.213.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;(2)PQ⊥SC.1.运用化归思想,将直线与平面垂直的判定转化为直线与平面内两条相交直线的判定,而同时还由此得到直线与直线垂直.即“线线垂直⇔线面垂直”.2.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.3.线线垂直的判定方法(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定答案知识梳理1.(1)任意一条垂直l⊥α垂线垂面(2)两条相交直线a⊂αb⊂αa∩b=A2.(1)射影锐角∠PAO(2)0°[0°,90°]作业设计1.B[只有④正确.]2.D33.C[取BD中点O,连接AO,CO,则BD⊥AO,BD⊥CO,∴BD⊥面AOC,BD⊥AC,又BD、AC异面,∴选C.]4.B[易证AC⊥面PBC,所以AC⊥BC.]5.A[⇒⇒BC⊥平面PAC⇒BC⊥PC,∴直角三角形有△PAB、△PAC、△ABC、△PBC....