2016高中数学1.3三角函数的诱导公式(2)作业B新人教A版必修41.求下列各三角函数式的值.(1)sin(-660°)=(2)cos=(3)2cos660°+sin630°=(4)tan·sin(-)=2。求sin(2nπ+)cos(nπ+)的值(n∈Z).3。(1)已知cos(π+α)=-,求sin(2π-α)的值;(2)已知sin(-α)=,求cos(+α)的值.4.已知cos(-θ)=a(|a|≤1).求证:cos(π+θ)-sin(π-θ)=-2a.B-57答案1.解:(1)∵-660°=-2×360°+60°,∴sin(-660°)=sin60°=.(2)∵=6π+,∴cos=cos=-.(3)原式=2cos(720°-60°)+sin(720°-90°)=2cos60°-sin90°=2×-1=0.(4)tan·sin(-)=tan(6π+)·sin(-2π+)=tan·sin=×=.2.解:①当n为奇数时,原式=sin·(-cosπ)=sin(π-)·[-cos(π+)]=sin·cos=×=.②当n为偶数时,原式=sinπ·cosπ=sin(π-)·cos(π+)=sin·(-cos)=-.3.(1)∵cos(π+α)=-cosα=-,∴cosα=,∴α是第一或第四象限角.①若α是第一象限角,则sin(2π-α)=-sinα=-=-.②若α是第四象限角,则sin(2π-α)=-sinα==.(2)∵(-α)+(+α)=,∴cos(+α)=cos[-(-α)]=sin(-α)=.4.证明:∵+θ=π-(-θ),-θ=+(-θ).∴cos(+θ)-sin(π-θ)=cos[π-(-θ)]-sin[+(-θ)]1=-cos(-θ)-cos(-θ)=-a-a=-2a.2