高一数学必修1对数与对数运算第二课时师:在初中,我们学习了指数的运算法则,请大家回忆一下.生:(m,n∈Z);(m,n∈Z);(n∈Z),师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)(1)正因数积的对数等于同一底数各个因数的对数的和,即loga(MN)=logaM+logaN.(请两个同学读法则(1),并给时间让学生讨论证明.)师:我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.师:(板书)设logaM=p,logaN=q,由对数的定义可以写成M=ap,N=aq.所以M·N=ap·aq=ap+q,所以loga(M·N)=p+q=logaM+logaN.即loga(MN)=logaM+logaN.师:这个法则的适用条件是什么?生:每个对数都有意义,即M>0,N>0;a>0且a≠1.师:观察法则(1)的结构特点并加以记忆.生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.师:非常好.例如,(板书)log2(32×64)=?生:log2(32×64)=log232+log264=5+6=11.师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化.师:(板书)log62+log63=?生:log62+log63=log6(2×3)=1.师:正确.由此例我们又得到什么启示?生:这是法则从右往左的使用.是升级运算.师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.师:仿照研究法则(1)的四个步骤,自己学习.(给学生三分钟讨论时间.)生:(板书)设logaM=p,logaN=q.根据对数的定义可以写成M=ap,N=aq.所以师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?生:(板书)师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.师:法则(2)的适用条件是什么?生:M>0,N>0;a>0且a≠1.师:观察法则(2)的结构特点并加以记忆.用心爱心专心生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.师:(板书)lg20-lg2=?师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.师:(板书)例1计算:(学生上黑板解,由学生判对错,并说明理由.):(1)log93+log927=log93×27=log981=2;(3)log2(4+4)=log24+log24=4;生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)生:第(3)题错!法则(1)的内容是:生:第(4)题错!法则(2)的内容是:师:通过前面同学出现的错误,我们在运用对数运算法则时要特别注意什么?生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(1)、(2).师:(板书)(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即loga(N)n=n·logaN.师:请同学们自己证明(给几分钟时间)师:法则(3)的适用条件是什么?生:a>0,a≠1;N>0.师:观察式子结构特点并加以记忆.生:从左往右仍然是降级运算.用心爱心专心师:例如,(板书)log332=log525=5log52.练习计算(log232)3.(找一好一差两名学生板书.)错解:(log232)3=log2(25)3=log2215=15.正确解:(log232)3=(log225)3=(5log22)3=53=125.(师再次提醒学生注意要准确记忆公式.)师:(板书)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即师:法则(4)的适用条件是什么?生:a>0,a≠1;N>0.师:法则(3)和法则(4)可以合在一起加以记忆.即logaNα=αlogaN(α∈R...