星期五(数列问题)2017年____月____日已知数列{an}与{bn}满足an+1-an=q(bn+1-bn),n∈N*.(1)若bn=2n-3,a1=1,q=2,求数列{an}的通项公式;(2)若a1=1,b1=2,且数列{bn}为公比不为1的等比数列,求q的值,使数列{an}也是等比数列;(3)若a1=q,bn=qn(n∈N*),且q∈(-1,0),数列{an}有最大值M与最小值m,求的取值范围.解(1)由bn=2n-3且q=2得an+1-an=4,所以数列{an}为等差数列,又a1=1,所以an=4n-3.(2)由条件可知an-an-1=q(bn-bn-1),所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=q(bn-bn-1)+q(bn-1-bn-2)+…+q(b2-b1)+a1=qbn-qb1+a1=qbn-2q+1.不妨设{bn}的公比为λ(λ≠1),则an=2qλn-1-2q+1,由{an}是等比数列知a=a1a3,可求出q=.经检验,an=λn-1,此时{an}是等比数列,所以q=满足条件.(3)由条件可知an-an-1=q(bn-bn-1),b1=q,所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=q(bn-bn-1)+q(bn-1-bn-2)+…+q(b2-b1)+a1=qbn-qb1+a1,即an=qn+1-q2+q,所以a2n=q2n+1-q2+q,因为q∈(-1,0),所以a2n+2-a2n=q2n+3-q2n+1=q2n+1(q2-1)>0,则{a2n}单调递增;a2n+1-a2n-1=q2n+2-q2n=q2n(q2-1)<0,则{a2n-1}单调递减.又a2n-a1=q2n+1-q2<0,所以数列{an}的最大项为a1=q=M,a2n+1-a2=q2n+2-q3=q3(q2n-1-1)>0,所以数列{an}的最小项为a2=q3-q2+q=m,则==,因为q∈(-1,0),所以q2-q+1∈(1,3),所以∈.