【走向高考】2016届高三数学一轮基础巩固第6章第3节等比数列北师大版一、选择题1.已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243[答案]A[解析]设数列{an}的公比为q,则q==2,∴由a1+a1q=3得a1=1,∴a7=1×27-1=64.2.(文)已知等比数列{an}的公比为正数,且a3·a9=2a,a2=2,则a1=()A.2B.C.D.[答案]B[解析] a3·a9=(a6)2=2a,∴()2=2,又{an}的公比为正数,∴q==.∴a1==.(理)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.5B.7C.6D.4[答案]A[解析] {an}为正项等比数列,∴a1a2a3,a4a5a6,a7a8a9成等比数列,且a4a5a6>0,∴a4a5a6==5,故选A.3.在等比数列{an}中,a2a6=16,a4+a8=8,则=()A.1B.-3C.1或-3D.-1或3[答案]A[解析]由a2a6=16,得a=16⇒a4=±4,又a4+a8=8,可得a4(1+q4)=8, q4>0,∴a4=4.∴q2=1,=q10=1.4.已知等比数列{an}满足an>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1等于()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2[答案]C[解析]由a5·a2n-5=22n(n≥3),得a=22n, an>0,∴an=2n.易得结论.5.(文)已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7B.5C.-5D.-7[答案]D[解析]本题考查了等比数列的性质及分类讨论思想.a4+a7=2,a5a6=a4a7=-8⇒a4=4,a7=-2或a4=-2,a7=4,1a4=4,a7=-2⇔a1=-8,a10=1⇔a1+a10=-7,a4=-2,a7=4⇒a10=-8,a1=1⇔a1+a10=-7.(理)(2014·山西四校联考)已知数列{an}的前n项和Sn=2n-1,则数列{an}的奇数项的前n项和为()A.B.C.D.[答案]C[解析]依题意,当n≥2时,an=Sn-Sn-1=2n-1;当n=1时,a1=S1=2-1=1,an=2n-1也适合a1.因此,an=2n-1,=2,数列{an}是等比数列.数列{an}的奇数项的前n项和为=.6.等比数列{an}的公比为q,则“a1>0,且q>1”是“对于任意正整数n,都有an+1>an”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件[答案]A[解析]易知,当a1>0且q>1时,an>0,所以=q>1,表明an+1>an;若对任意自然数n,都有an+1>an成立,当an>0时,同除an得q>1,但当an<0时,同除an得00,a1a5=4,{an}为等比数列,∴a=4,∴a3=2.∴log2a1+log2a2+log2a3+log2a4+log2a5=log2(a1a2a3a4a5)=log2a=log225=5.(理)(2014·广东高考)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=________.[答案]50[解析] a10a11+a9a12=2e5,∴a1·a20=e5.又 lna1+lna2+…+lna20=ln(a1a2…a20)=ln[(a1a20)(a2a19)…(a10a11)]=ln(e5)10=lne50=50.注意等比数列性质:若m+n=p+q,则am·an=ap·aq,对数的性质logamn=nlogam.三、解答题10.(文)(2014·江西高考)已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.[解析](1) Sn=(n∈N*)∴Sn-1=(n≥2)∴当n≥2时,an=Sn-Sn-1==3n-2当n=1时,a1=S1==1,也符合上式∴an=3n-2,(n∈N*)(2)要使a1,an,am成等比数列,只需a=a1.am即(3n-...