电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题20 数学思想在解题中的应用(二)》(命题方向把握+命题角度分析) 新人教版VIP免费

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题20 数学思想在解题中的应用(二)》(命题方向把握+命题角度分析) 新人教版_第1页
1/6
【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题20 数学思想在解题中的应用(二)》(命题方向把握+命题角度分析) 新人教版_第2页
2/6
【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题20 数学思想在解题中的应用(二)》(命题方向把握+命题角度分析) 新人教版_第3页
3/6
必考问题20数学思想在解题中的应用(二)1.(2012·山东)定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=().A.335B.338C.1678D.2012答案B[由f(x+6)=f(x)可知,函数f(x)的周期为6,所以f(-3)=f(3)=-1,f(-2)=f(4)=0,f(-1)=f(5)=-1,f(0)=f(6)=0,f(1)=1,f(2)=2,所以在一个周期内有f(1)+f(2)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2012)=f(1)+f(2)+335×1=1+2+335=338.]2.(2012·福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f≤[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有f≤[f(x1)+f(x2)+f(x3)+f(x4)].其中真命题的序号是().A.①②B.①③C.②④D.③④答案D[取函数f(x)=则函数f(x)满足题设条件具有性质P,但函数f(x)的图象是不连续的,故①为假命题,排除A、B;取函数f(x)=-x,1≤x≤3,则函数满足题设条件具有性质P,但f(x2)=-x2,1≤x≤就不具有性质P,故②为假命题,排除C.应选D.]3.(2012·江西)下图为某算法的程序框图,则程序运行后输出的结果是________.解析此框图依次执行如下循环:第一次:T=0,k=1,sin>sin0成立,a=1,T=T+a=1,k=2,2<6,继续循环;第二次:sinπ>sin不成立,a=0,T=T+a=1,k=3,3<6,继续循环;第三次:sin>sinπ不成立,a=0,T=T+a=1,k=4,4<6,继续循环;第四次:sin2π>sin成立,a=1,T=T+a=2,k=5,5<6,继续循环;第五次:sin>sin2π成立,a=1,T=T+a=3,k=6,6<6不成立,跳出循环,输出T的值为3.答案31.分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等,在选择题、填空题、解答题中都会涉及到分类讨论的思想方法.2.等价转换思想的应用在高考试题中处处可见,是解高考试题常用的数学思想.1.分类与整合思想实质上是“化整为零,各个击破,再积零为整”的数学策略.利用好分类与整合思想可以优化解题思路,降低问题难度.复习中要养成分类与整合的习惯,常见的分类情形有:概念分类型,运算需要型,参数变化型,图形变动型.2.转化与化归思想是高中数学学习中最基本、最重要的思想方法,它无处不在.比如:在1解析几何中,通过建立坐标系将几何问题划归为代数问题.必备知识分类与整合思想在解某些数学问题时,我们常常会遇到这样一种情况:解到某一步之后,发现问题的发展是按照不同的方向进行的.当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.这里集中体现的是由大化小,由整体化为部分,由一般化为特殊的解决问题的方法,其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类与整合思想.化归与转化思想在解决一个问题时人们的眼光并不落在结论上,而是去寻觅、追溯一些熟知的结果,由此将问题化难为易,化繁为简,化大为小,各个击破,达到最终解决问题的目的,这种解决问题的思想就是化归与转化思想.必备方法1.分类讨论的几种情况(1)由数学的概念、图形的位置等引发的分类讨论:数学中的概念有些就是分类的,如绝对值的概念.(2)由数学的定理、法则、公式等引发的分类讨论:一些数学定理和公式是分类的,如等比数列的求和公式等.(3)由参数变化引发的分类讨论:当要解决的问题中涉及参数时,由于参数在不同范围内取值时,问题的发展方向不同,这就要把参数划分的几个部分分类解决.(4)问题的具体情况引发的分类讨论:有些数学问题本身就要分情况解决,如概率计算中要根据要求,分类求出基本事件的个数.(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题20 数学思想在解题中的应用(二)》(命题方向把握+命题角度分析) 新人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部