电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题19 数学思想在解题中的应用(一)》(命题方向把握+命题角度分析) 新人教版VIP免费

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题19 数学思想在解题中的应用(一)》(命题方向把握+命题角度分析) 新人教版_第1页
1/8
【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题19 数学思想在解题中的应用(一)》(命题方向把握+命题角度分析) 新人教版_第2页
2/8
【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题19 数学思想在解题中的应用(一)》(命题方向把握+命题角度分析) 新人教版_第3页
3/8
必考问题19数学思想在解题中的应用(一)1.(2012·重庆)设平面点集A={(x,y)|(y-x)≥0},B={(x,y)|(x-1)2+(y-1)2≤1},则A∩B所表示的平面图形的面积为().A.πB.πC.πD.答案D[数形结合,画出图象,可知集合B表示的是一个圆面,集合A表示的图形在圆(x-1)2+(y-1)2=1内的部分正好是圆面积的一半,因此A∩B所表示的平面图形的面积是,选D.]2.(2012·新课标全国)设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为().A.B.C.D.答案C[由题意可得|PF2|=|F1F2|,∴2=2c,∴3a=4c,∴e=.]3.(2012·辽宁)设变量x,y满足则2x+3y的最大值为().A.20B.35C.45D.55答案D[作出不等式组对应的平面区域(如图所示),平移直线y=-x,易知直线经过可行域上的点A(5,15)时,2x+3y取得最大值55,故选择D.]4.(2012·重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|<|BF|,则|AF|=________.解析设过抛物线焦点的直线为y=k,联立得整理得k2x2-(k2+2)x+k2=0,x1+x2=,x1x2=.|AB|=x1+x2+1=+1=,得k2=24代入k2x2-(k2+2)x+k2=0得12x2-13x+3=0,解之得x1=,x2=,又|AF|<|BF|,故|AF|=x1+=.答案1.函数的主干知识、函数的综合应用以及函数与方程思想的考查一直是高考的重点内容之一.高考试题中,既有灵活多变的客观性小题,又有一定能力要求的主观性大题,难度有易有难,可以说是贯穿了数学高考整份试卷,高考中所占比重比较大.2.数形结合思想的考查常以数学概念、数学式的几何意义、函数图象、解析几何等为载体,多数以选择题、填空题出现,难度中等.(1)对于函数与方程思想,在解题中要善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数与方程的相互转化的关系是运用函数与方程思想解题的关键.(2)在运用数形结合思想分析问题时,要注意三点:①理解一些概念与运算法则的几何意义以及曲线的代数特征,对题目中的条件和结论既分析其几何意义,又分析其代数意义;②恰当设参数、合理用参数,建立关系,由形思数,以数想形,做好数形转化;③确定参数的取值范围,参数的范围决定图形的范围.1必备知识函数与方程思想(1)函数思想就是用运动和变化的观点,分析和研究具体问题中的数量关系,并通过函数形式建立函数关系,然后利用函数有关的知识(定义域、值域、最值、单调性、奇偶性、周期性、对称性、图象、导数)使问题得以解决.函数思想贯穿于高中数学教学的始终,不仅在函数各章的学习,而且在研究方程、不等式、数列、解析几何等其他内容时也起着十分重要的作用.(2)方程的思想是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.在实际问题的解决过程中,函数、方程、不等式等常常互相转化.因此,函数与方程的思想是高考考查的重点知识.数形结合思想(1)数形结合就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学规律性与灵活性的有机结合.(2)数形结合的思想方法应用广泛,如解方程、不等式问题,求函数的值域、最值问题、三角函数问题,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程.必备方法1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当试题与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图象与性质解决有关问题,而研究函数的性质,也离不开解不等式.3.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题19 数学思想在解题中的应用(一)》(命题方向把握+命题角度分析) 新人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部