轮专题复习·数学理(苏)第二部分洞察高考热点39题专题一70分填空题大突破与解题技法【专题定位】江苏高考对填空题知识点的考查相对稳定,共有14道,分值70分,填空题的得分多少,决定了整个试卷的成败,本专题通过对高考填空题的题型进行分类,同时穿插方法的指导,提高解题的速度和正确率.填空题没有备选项.因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,只要求写出结果,不要求写出解答过程,不设中间分,更易失分,因而在解答过程中应力求准确无误.【应对策略】解填空题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫.要想又快又准地答好填空题,除直接推理计算外,还要讲究解题策略,尽量避开常规解法.解题的基本方法一般有:①直接求解法;②数形结合法;③特殊化法(特殊值法、特殊函数法、特殊角法、特殊数列法、图形特殊位置法、特殊点法、特殊方程法、特殊模型法);④整体代换法;⑤类比、归纳法;⑥图表法等.【例1】►(2012·南通模拟)已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=________.解析易得A∪B=A={1,3,9},则∁U(A∪B)={5}.答案{5}【例2】►已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为________.解析A={1,2},B={1,2,3,4},故满足条件A⊆C⊆B的集合C的个数即为集合{3,4}的子集个数22=4(个).答案4解题方法技巧:直接求解法直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的一种解题方法.它是解填空题常用的基本方法,使用直接法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的解法.【突破训练1】若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B=________.解析因为A={x|-3<x<3},B={x|x>0},所以A∩B={x|0<x<3}.答案{x|0<x<3}【例3】►设集合A={(x,y)},B={(x,y)|y=3x},则A∩B的子集的个数是________.解析画出椭圆+=1和指数函数y=3x图象,可知其有两个不同交点,记为A1,A2,则A∩B的子集应为∅,{A1},{A2},{A1,A2}共四种.答案4【例4】►A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R}.若A∩B=∅,则实数a的取值范围是________.1解析由|x-a|<1得-1<x-a<1,即a-1<x<a+1.如图,要使A∩B=∅成立,由图可知a+1≤1或a-1≥5,所以a≤0或a≥6.答案a≤0或a≥6解题方法技巧:数形结合法对于一些含有几何背景的填空题,若能根据题目条件的特点,作出符合题意的图形,做到数中思形,以形助数,并通过对图形的直观分析、判断,则往往可以简捷地得出正确的结果.数形结合,能使抽象的数学问题转化成直观的图形,使抽象思维和形象思维结合起来.这种思想是近年来高考的热点之一,也是解答数学填空题的一种重要策略.【突破训练2】已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为________.解析集合A表示由圆x2+y2=1上所有点组成的集合,集合B表示直线x+y=1上所有点的集合, 直线过圆内点,∴直线与圆有两个交点,即A∩B的元素个数为2.答案2【突破训练3】设集合A={(x,y)|x+a2y+6=0},B={(x,y)|(a-2)x+3ay+2a=0},若A∩B=∅,则实数a的值为________.解析由A,B集合的几何意义可知,A,B集合表示的是两条直线,A∩B=∅,则两直线平行,故=≠,解得a=-1,又经检验a=0时也满足题意.答案0或-1【示例】►(2012·南京、盐城模拟)已知复数z满足(2-i)z=5i(其中i为虚数单位),则复数z的模是________.解析|(2-i)z|=|5i|,即|z|=5,解得|z|=.答案【突破训练】如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,...