电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【拿高分,选好题第二波】(新课程)高中数学二轮复习 精选第一部分 25个必考问题 专项突破《必考问题13 立体几何》(命题方向把握+命题角度分析,含解析) 苏教版VIP免费

【拿高分,选好题第二波】(新课程)高中数学二轮复习 精选第一部分 25个必考问题 专项突破《必考问题13 立体几何》(命题方向把握+命题角度分析,含解析) 苏教版_第1页
1/7
【拿高分,选好题第二波】(新课程)高中数学二轮复习 精选第一部分 25个必考问题 专项突破《必考问题13 立体几何》(命题方向把握+命题角度分析,含解析) 苏教版_第2页
2/7
【拿高分,选好题第二波】(新课程)高中数学二轮复习 精选第一部分 25个必考问题 专项突破《必考问题13 立体几何》(命题方向把握+命题角度分析,含解析) 苏教版_第3页
3/7
必考问题13立体几何【真题体验】1.(2012·江苏,7)如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为________cm3.解析关键是求出四棱锥ABB1D1D的高,连接AC交BD于O,在长方体中, AB=AD=3,∴BD=3且AC⊥BD.又 BB1⊥底面ABCD,∴BB1⊥AC.又DB∩BB1=B,∴AC⊥平面BB1D1D,∴AO为四棱锥ABB1D1D的高且AO=BD=. S矩形BB1D1D=BD×BB1=3×2=6,∴VABB1D1D=S矩形BB1D1D·AO=×6×=6(cm3).答案62.(2012·江苏,16)如图,在直三棱柱ABCA1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.证明(1)因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1,又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.【高考定位】1高考对本内容的考查主要有:(1)主要考查空间概念,空间想象能力,点线面位置关系判断,表面积与体积计算等.A级要求(2)主要考查线线、线面、面面平行与垂直的证明.B级要求【应对策略】证明或探究空间中线线、线面、面面平行与垂直的位置关系,一要熟练掌握所有判定定理与性质定理,梳理好几种位置关系的常见证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面平行.而证明线线平行常用的是三角形中位线性质,或构造平行四边形;二要用分析与综合相结合的方法来寻找证明的思路;三要注意表述规范,推理严谨,避免使用一些虽然正确但不能作为推理依据的结论.必备知识1.平行关系(1)判定两直线平行,可供选用的定理有:①公理4:若a∥b,b∥c,则a∥c.②线面平行的性质定理:若a∥α,a⊂β,α∩β=b,则a∥b.③线面垂直的性质定理:若a⊥α,b⊥α,则a∥b.④面面平行的性质定理:若α∥β,r∩α=a,r∩β=b,则a∥b.(2)线面平行的判定,可供选用的定理有:①若a∥b,a⊄α,b⊂α,则a∥α.②若α∥β,a⊂α,则a∥β.(3)判定两平面平行,可供选用的定理有:若a,b⊂α,a,b相交,且a∥β,b∥β,则α∥β.2.垂直关系(1)判定两直线垂直,可供选用的定理有:①若a∥b,b⊥c,则a⊥c.②若a⊥α,b⊂α,则a⊥b.(2)线面垂直的判定,可选用的定理有:①若a⊥b,a⊥c,b,c⊂α,且b与c相交,则a⊥α.②若a∥b,b⊥α,则a⊥α.③若α⊥β,α∩β=b,a⊂α,a⊥b,则a⊥β.(3)判定两平面垂直,可供选用的定理有:若a⊥α,a⊂β,则α⊥β.必备方法1.线线、线面、面面的平行与垂直的关系可以通过下列形式转化.2.弄清各类问题的关键点,把握问题的层次,重视容易忽视的问题,如证平行时,由于过分强调线线、线面、面面平行的转化,而忽视由垂直关系证平行关系;证垂直时,同样忽视由2平行关系来证明或利用勾股定理计算证明.3.图形的展开、折叠、切割在考查空间想象能力方面有着不可比拟的优势,解决此类问题的关键是弄清图形变化前后的点、线、面的对应关系,并分析清楚变化前后点、线、面的位置变化.命题角度一空间几何体的认识及表面积与体积的计算[命题要点]求简单组合体的侧面积和体积.【例1】►(2012·南师附中模拟)已知四棱椎PABCD的底面是边长为6的正方形,侧棱PA⊥底面ABCD,且PA=8,则该四棱椎的体积是________.[审题视点][听课记录][审题视点]四棱锥的高已知,先求底面面积,再利用棱锥的体积公式求体积.解析底面是边长为6的正方形,故其底面积为36,又侧棱PA⊥底面ABCD,且PA=8,故棱锥的高为8,由棱锥体积公式得V=×36×8=96.答案96涉及柱、锥、台、球及其简单组合体的侧面积和体积的计算问题,要在正确理解概念的基础上,画出符合题意的图形或辅助线(面),分析几何体的结构特征,选择合适的公式,进行计算.另外要重视空间问题平面化的思...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【拿高分,选好题第二波】(新课程)高中数学二轮复习 精选第一部分 25个必考问题 专项突破《必考问题13 立体几何》(命题方向把握+命题角度分析,含解析) 苏教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部