4.3.1角一.教学目标:1.知识与技能:(1)通过丰富的实例,理解角的有关概念;(2)认识角的表示方法(3)能进行度与度分秒之间的转化(4)能够作一个角等于已知角2.过程与方法:体会角在实际生活中的应用,培养学生的抽象思维3.情感与价值观:培养学生学习数学的好奇心与求知欲二、教学重点和难点教学重点:1.角与角的相关概念;2.角的度量单位以及单位之间的换算.教学难点:由于角的度量单位是60进制,所以角的单位换算是本节的难点.教学方法:师生合作交流方法教学准备:多媒体课件三角板量角器三、教学过程教师活动、学生活动、设计意图1、提出问题展示实物(如时钟,墙角,教材P136页的图片)1、观察实物与图片,你发现其中有什么相同图形吗?学生看书,教师巡视.学生回答问题,教师点评.学生回答问题,教师点评.学生回答,教师点评,注意鼓励学生2、你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画3、从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?思考相互交流并回答挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角.培养学生的动手能力.引导学生观察并归纳角的共同点讲授新课(一)角的概念1、在学生充分发表自己对角的认识的基础上,师生共同归纳得出:有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边.问题1:钟表上的时针与分针是如何构成角的?从中你能得到什么启发?师生共同归纳得出角的第二定义:角是由一条射线绕着它的端点旋转而成的图形.进而得到两种特殊的角:平角和周角.平角:当射线OB绕O点旋转,当终止位置OA与起始位置OB在一条直线上时,形成平角;周角:当射线OB绕O点旋转,当终止位置OA与起始位置OB重合时,形成周角(二)角的表示:我们怎样表示角呢?请同学们看书上说了几种表示方法?(1)用三个大写字母可以表示一个角。比如∠AOB,谁能指出下列各角的顶点和两条边?注意:①三个字母的顺序有规定,顶点的字母必须写在中间。②顶点的字母不一定用O,角的始边与终边的字母也可以随意。(2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.判断下列角可以用顶点的字母表示吗?(3)用数字或小写的希腊字母表示角。(注意:角中不能有角)练习:下面表示角的方法,哪个是正确的?哪个是错误的?1.请同学们借助量角器画出下列各角:(1)30°(2)45°(3)60°(4)90°(5)120°(6)150°(7)62°(8)105°1α2βO学生画图,教师指导.(根据需要教师可先做示范)2、提醒学生:角是有大有小,角的大小与边的长短无关,因为角的两边是射线,不可以度量.角的大小只与构成角的两边张开的大小有关,角可以度量可以比较大小,可以参与运算三、角度制的概念:以度分秒为单位的角的度量制就是角度制度、分、秒是常用的角的度量单位,把一个周角分成360份,一份就是1°,把1°分成60份,一份就是1′,把1′分成60份,一份就是1″,,从角度制不难发现,角的度数在进行运算时,是60进制的.即1周角=3600,1平角==1800,1°=60′,1′=60″问题3:你能解决下列问题吗?试一试:(1)29°26′59″+48°58′15″;(2)36°26′46″-29°46′29″;(3)32°25′24″×3;(4)180°—23°31′25″.提醒:转化时必须逐级进行,”越级”转化容易出错3、巩固练习四、小结:1.角的定义、表示方法;2.度分秒的转化、角度制;3.度分秒的转化、角度制通过总结归纳,完善学生的已有知识结构五、作业:习题4.3第1~3题.六、课后反思:对山套乔拉克铁热克牧业寄宿制学校2016-12-6